Generalized Hitchin system, spectral curve and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} =1 dynamics

被引:0
|
作者
Dan Xie
Kazuya Yonekura
机构
[1] Institute for Advanced Study,School of Natural Sciences
关键词
Supersymmetric gauge theory; M-Theory;
D O I
10.1007/JHEP01(2014)001
中图分类号
学科分类号
摘要
A generalized Hitchin equation was proposed as the BPS equation for a large class of four dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 1 theories engineered using M5 branes. In this paper, we show how to write down the spectral curve for the moduli space of generalized Hitchin equations, and extract interesting \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 1 dynamics out of it, such as deformed modui space, chiral ring relation, SUSY breaking, etc. Holomorphy plays a crucial role in our construction.
引用
收藏
相关论文
共 50 条