Moments for Tempered Fractional Advection-Diffusion Equations

被引:0
作者
Yong Zhang
机构
[1] Desert Research Institute,
来源
Journal of Statistical Physics | 2010年 / 139卷
关键词
Spatial moments; Tempered Lévy motion; Anomalous diffusion;
D O I
暂无
中图分类号
学科分类号
摘要
This paper develops moment formulas for exponentially tempered, fractional advection-diffusion equations (TFADEs) that transition from anomalous to asymptotic diffusion limits over time. Exact analytical expressions or series representations for spatial moments up to the fourth order are derived by integral transform or asymptotic expansion approach. A fully Lagrangian solver, cross verified by an implicit Eulerian approach, is also developed to calculate numerically the complete evolution of moments for the TFADEs with complex initial and boundary conditions. Moment analysis identifies the diffusion equation that attracts the tempered anomalous diffusion in the long time limit. Fitting of moments measured at two end members of alluvial systems checks the applicability of moment analysis in understanding real diffusion.
引用
收藏
页码:915 / 939
页数:24
相关论文
共 156 条
[1]  
Adams E.E.(1992)Field study of dispersion in a heterogeneous aquifer: 2. Spatial moment analysis Water Resour. Res. 28 3293-3307
[2]  
Gelhar L.W.(2010)Tempered stable Lévy motion and transient super-diffusion J. Comput. Appl. Math. 233 2438-2448
[3]  
Baeumer B.(1992)Field study of dispersion in a heterogeneous aquifer: 4. Investigation of adsorption and sampling bias Water Resour. Res. 28 3325-3336
[4]  
Meerschaert M.M.(1992)Field study of dispersion in a heterogeneous aquifer: 1. Overview and site description Water Resour. Res. 28 3281-3291
[5]  
Boggs J.M.(2002)Barrier options and touch-and-out options under regular Lévy processes of exponential type Ann. Appl. Probab. 12 1261-1298
[6]  
Adams E.E.(2004)A possible truncated-Levy-flight statistics recovered from interplanetary solar-wind velocity and magnetic-field fluctuations Europhys. Lett. 66 146-152
[7]  
Boggs J.M.(2003)The finite moment log stable process and option pricing J. Finance 58 753-778
[8]  
Young S.C.(2007)Fractional diffusion models of option prices in markets in markets with jumps Physica A 374 749-763
[9]  
Beard L.M.(2007)Fluid limit of the continuous-time random walk with general Lévy jump distribution functions Phys. Rev. E 76 1113-1117
[10]  
Boyarchenko S.(2005)Anomalous diffusion and fractional advection-diffusion equation Acta Phys. Sin. 54 1505-1535