Laplace transforms of vector-valued functions with growth ω and semigroups of operators

被引:0
作者
Ralph deLaubenfels
Vũ Quôc Phóng
Shengwang Wang
机构
[1] Scientia Research Institute,Mathematics Department
[2] Ohio University,Mathematics Department
[3] Nanjing University Nanjing,undefined
来源
Semigroup Forum | 2002年 / 64卷
关键词
Banach Space; Mild Solution; Semigroup Forum; Studia Math; Continuous Semigroup;
D O I
暂无
中图分类号
学科分类号
摘要
For an arbitrary continuous, increasing function ω : [0, ∞) ↦ C of finite exponential type, we characterize Laplace-Stieltjes transforms of Banach-space-valued functions that are O(ω) , and use this to establish a Hille-Yosida type theorem for strongly continuous semigroups that are O(ω) . Corollaries include characterizing generators of strongly continuous semigroups that are \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$O\left( {\exp \left( {dt^{\tfrac{1}{d}} } \right)} \right)$$ \end{document}, for d > 1 , in addition to the already known examples of exponential or polynomial growth.
引用
收藏
页码:355 / 375
页数:20
相关论文
empty
未找到相关数据