共 50 条
- [31] New Exact Traveling Wave Solutions to the Kawahara Equation using the tanh(ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tanh (\xi )$$\end{document} Expansion Method International Journal of Applied and Computational Mathematics, 2023, 9 (5)
- [32] Exact travelling wave Solutions for some nonlinear time fractional fifth-order Caudrey–Dodd–Gibbon equation by G′/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\left( G^{\prime }/G\right) }$$\end{document}-expansion method SeMA Journal, 2016, 73 (2) : 121 - 129
- [33] Bifurcation of new optical solitary wave solutions for the nonlinear long-short wave interaction system via two improved models of (G′G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\frac{G'}{G})$$\end{document} expansion method Optical and Quantum Electronics, 2021, 53 (9)
- [34] Painlevé analysis, Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Phi }$$\end{document}-integrable and exact solutions to the (3+1)-dimensional nonlinear evolution equations Nonlinear Dynamics, 2016, 85 (1) : 281 - 286
- [35] The extended-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{G'}{G}\right)$$\end{document}-expansion method and new exact solutions for the conformable space-time fractional diffusive predator-prey system Scientific Reports, 15 (1)
- [36] Invariant subspaces and exact solutions: (1+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+1)$$\end{document} and (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2+1)$$\end{document}-dimensional generalized time-fractional thin-film equations Computational and Applied Mathematics, 2023, 42 (2)
- [37] Geodesics dynamics in the Linet–Tian spacetime with Λ<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda <0$$\end{document} General Relativity and Gravitation, 2014, 46 (3)
- [38] Cartesian Solutions for the Incompressible Density-Dependent Euler–Poisson Equations in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{N}$$\end{document} International Journal of Applied and Computational Mathematics, 2017, 3 (2) : 1549 - 1556
- [39] Colliding gravitino plane waves in N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=1$$\end{document} supergravityColliding gravitino plane waves in N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=1$$\end{document} supergravityT. Dereli, Y. Şenikoğlu General Relativity and Gravitation, 2024, 56 (11)
- [40] Investigation of (2+1)-dimensional extended Calogero–Bogoyavlenskii–Schiff equation by generalized Kudryashov method and two variable (G′G,1G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big(\frac{G'}{G},\frac{1}{G}\big)$$\end{document}-expansion method Optical and Quantum Electronics, 56 (5)