共 50 条
- [21] Analytical solutions to the nonlinear space–time fractional models via the extended G′G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\frac{{G^{\prime } }}{{G^{2} }}} \right)$$\end{document}-expansion method Indian Journal of Physics, 2020, 94 (8) : 1237 - 1247
- [22] On the analytical solutions of conformable time-fractional extended Zakharov–Kuznetsov equation through (G′/G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G'/G^{2}$$\end{document})-expansion method and the modified Kudryashov method SeMA Journal, 2019, 76 (1) : 15 - 25
- [23] New optical soliton solutions for nonlinear complex fractional Schrödinger equation via new auxiliary equation method and novel (G′/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({G'}/{G})$$\end{document}-expansion method Pramana, 2018, 90 (5)
- [24] On the exact solutions of nonlinear evolution equations by the improved tan(φ/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tan (\varphi /2)$$\end{document}-expansion method Pramana, 2020, 94 (1)
- [25] Solitary and periodic wave solutions of higher-dimensional conformable time-fractional differential equations using the (G′G,1G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$( \frac{G'}{G},\frac{1}{G} ) $\end{document}-expansion method Advances in Difference Equations, 2018 (1)
- [26] An Exact Solution for Geophysical Edge Waves in the β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta}$$\end{document}-Plane Approximation Journal of Mathematical Fluid Mechanics, 2015, 17 (4) : 699 - 706
- [27] Classical and quantum cosmology of K-essentially modified R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^2$$\end{document} and pure Rp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^p$$\end{document} gravity General Relativity and Gravitation, 2019, 51 (7)
- [28] Soliton solutions of nonlinear coupled Davey–Stewartson Fokas system using modified auxiliary equation method and extended (G′/G2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G'/G^{2})$$\end{document}-expansion method Scientific Reports, 14 (1)
- [29] A comparative study of two fractional nonlinear optical model via modified G′G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{G^{\prime }}{G^2}\right)$$\end{document}-expansion method Optical and Quantum Electronics, 2024, 56 (2)
- [30] Generalized (G′G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\frac{G^{\prime }}{G})$$\end{document}-expansion method and exact traveling wave solutions of the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity in optical fiber materials Optical and Quantum Electronics, 2017, 49 (2)