Exact analytical solutions to the geodesic equations in general relativity via (G′/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G'/G)$$\end{document} - expansion method

被引:0
|
作者
V. K. Shchigolev
机构
[1] Ulyanovsk State University,Department of Theoretical Physics
关键词
Geodesic equations; Spherically symmetric spacetime; Exact solutions; -expansion method;
D O I
10.1007/s10714-022-02964-x
中图分类号
学科分类号
摘要
In this paper, the (G′/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G'/G)$$\end{document} -expansion method is used to construct two certain classes of one-parameter exact solutions to the geodesic equations in General Relativity (GR). This method has been developed as an effective technique to construct exact solutions for nonlinear evolution equations or nonlinear partial derivative equations (PDE). At the first stage of this method, a nonlinear PDE is transformed into nonlinear ordinary derivative equation (ODE) of a polynomial form. Therefore, if we have some nonlinear ODE of a polynomial form, say, the geodesic equation, then sometimes its solutions can be obtained following to the procedure of (G′/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G'/G)$$\end{document} -expansion method. Here, this method allows us to obtain two classes of exact analytical solutions for the isotropic and time-like geodesic equations in the spherically symmetric spacetime metrics of the Schwarzschild and Kiselev black holes.
引用
收藏
相关论文
共 50 条