Classification of self-dual cyclic codes over the chain ring Zp[u]/⟨u3⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z_p[u]/\langle u^3 \rangle $$\end{document}

被引:0
作者
Boran Kim
Yoonjin Lee
机构
[1] Sungkyunkwan University,Department of Mathematics
[2] Ewha Womans University,Department of Mathematics
来源
Designs, Codes and Cryptography | 2020年 / 88卷
关键词
Self-dual code; Cyclic code; Chain ring; Mass formula; Generator; ideal; Primary 94B15;
D O I
暂无
中图分类号
学科分类号
摘要
We classify all the cyclic self-dual codes of length pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^k$$\end{document} over the finite chain ring R:=Zp[u]/⟨u3⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal R:=\mathbb Z_p[u]/\langle u^3 \rangle $$\end{document}, which is not a Galois ring, where p is a prime number and k is a positive integer. First, we find all the dual codes of cyclic codes over R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal R}$$\end{document} of length pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^k$$\end{document} for every prime p. We then prove that if a cyclic code over R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal R}$$\end{document} of length pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^k$$\end{document} is self-dual, then p should be equal to 2. Furthermore, we completely determine the generators of all the cyclic self-dual codes over Z2[u]/⟨u3⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z_2[u]/\langle u^3 \rangle $$\end{document} of length 2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^k$$\end{document}. Finally, we obtain a mass formula for counting cyclic self-dual codes over Z2[u]/⟨u3⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z_2[u]/\langle u^3 \rangle $$\end{document} of length 2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^k$$\end{document}.
引用
收藏
页码:2247 / 2273
页数:26
相关论文
共 61 条
[21]  
Sriboonchitta S(2019)Gray isometries for finite chain rings and a nonlinear ternary Finite Fields Appl. 59 208-237
[22]  
Dinh HQ(2015) code Des. Codes Cryptogr. 74 1-13
[23]  
López-Permouth SR(2015)The Finite Fields Appl. 34 123-138
[24]  
Dinh HQ(2009) -linearity of Kerdock, Preparata, Goethals, and related codes Finite Fields Appl. 15 387-391
[25]  
Singh AK(2001)Cyclic codes over IEEE Trans. Inf. Theory 47 1773-1779
[26]  
Kumar P(undefined) of length undefined undefined undefined-undefined
[27]  
Sriboonchitta S(undefined)A note on cyclic codes over undefined undefined undefined-undefined
[28]  
Dinh HQ(undefined) of length undefined undefined undefined-undefined
[29]  
Wang L(undefined)Construction of extremal self-dual codes over undefined undefined undefined-undefined
[30]  
Zhu S(undefined) and undefined undefined undefined-undefined