Classification of self-dual cyclic codes over the chain ring Zp[u]/⟨u3⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z_p[u]/\langle u^3 \rangle $$\end{document}

被引:0
作者
Boran Kim
Yoonjin Lee
机构
[1] Sungkyunkwan University,Department of Mathematics
[2] Ewha Womans University,Department of Mathematics
来源
Designs, Codes and Cryptography | 2020年 / 88卷
关键词
Self-dual code; Cyclic code; Chain ring; Mass formula; Generator; ideal; Primary 94B15;
D O I
暂无
中图分类号
学科分类号
摘要
We classify all the cyclic self-dual codes of length pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^k$$\end{document} over the finite chain ring R:=Zp[u]/⟨u3⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal R:=\mathbb Z_p[u]/\langle u^3 \rangle $$\end{document}, which is not a Galois ring, where p is a prime number and k is a positive integer. First, we find all the dual codes of cyclic codes over R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal R}$$\end{document} of length pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^k$$\end{document} for every prime p. We then prove that if a cyclic code over R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal R}$$\end{document} of length pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^k$$\end{document} is self-dual, then p should be equal to 2. Furthermore, we completely determine the generators of all the cyclic self-dual codes over Z2[u]/⟨u3⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z_2[u]/\langle u^3 \rangle $$\end{document} of length 2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^k$$\end{document}. Finally, we obtain a mass formula for counting cyclic self-dual codes over Z2[u]/⟨u3⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z_2[u]/\langle u^3 \rangle $$\end{document} of length 2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^k$$\end{document}.
引用
收藏
页码:2247 / 2273
页数:26
相关论文
共 61 条
[1]  
Abualrub T(2003)On the generator of IEEE Trans. Inf. Theory 49 2126-2133
[2]  
Oehmke RB(2007) cyclic codes of length Des. Codes Cryptogr. 42 273-287
[3]  
Abualrub T(2011)Cyclic codes over the rings Turk. J. Math. 35 737-7494
[4]  
Siap I(1999) and IEEE Trans. Inf. Theory 45 1250-1255
[5]  
Al-Ashker M(2016)Cyclic codes over Appl. Algebra Eng. Commun. Comput. 27 259-277
[6]  
Hamoudeh M(2017)Cyclic codes and self-dual codes over Cryptogr. Commun. 9 599-624
[7]  
Bonnecaze A(2010)Cyclic codes over J. Algebra 5 940-950
[8]  
Udaya P(2016) of oddly even length Discrete Math. 339 1706-1715
[9]  
Cao Y(2018)Cyclic codes of odd length over Discrete Math. 341 324-335
[10]  
Fu F-W(2004)Constacyclic codes of length IEEE Trans. Inf. Theory 50 1728-1744