Estimate for the number of limit cycles of Abel equation via a geometric criterion on three curves

被引:0
作者
Jianfeng Huang
Haihua Liang
机构
[1] Jinan University,Department of Mathematics
[2] Guangdong Polytechnic Normal University,School of Mathematics and Systems Science
来源
Nonlinear Differential Equations and Applications NoDEA | 2017年 / 24卷
关键词
Abel equation; Coefficients without fixed signs; Limit cycles; Upper bound; Planar polynomial system with homogeneous nonlinearities; Primary 34C07; Secondary 37C05; Tertiary 35F60;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the investigation of Abel equation x˙=S(t,x)=∑i=03ai(t)xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{x}=S(t,x)=\sum ^3_{i=0}a_i(t)x^i$$\end{document}, where ai∈C∞([0,1])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_i\in \mathrm C^{\infty }([0,1])$$\end{document}. A solution x(t) with x(0)=x(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x(0)=x(1)$$\end{document} is called a periodic solution. And an orbit x=x(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=x(t)$$\end{document} is called a limit cycle if x(t) is a isolated periodic solution. By means of Lagrange interpolation formula, we give a criterion to estimate the number of limit cycles of the equation. This criterion is only concerned with S(t, x) on three non-intersecting curves. Applying our main result, we prove that the maximum number of limit cycles of the equation is 4 if a2(t)a0(t)<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_2(t)a_0(t)<0$$\end{document}. To the best of our knowledge, this is a nontrivial supplement for a classical result which says that the equation has at most 3 limit cycles when a2(t)≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_2(t)\ne 0$$\end{document} and a0(t)≡0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_0(t)\equiv 0$$\end{document}. We also study a planar polynomial system with homogeneous nonlinearities: x˙=ax-y+Pn(x,y),y˙=x+ay+Qn(x,y),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \dot{x}=ax-y+P_n(x,y),\ \ \dot{y}=x+ay+Q_n(x,y), \end{aligned}$$\end{document}where a∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in \mathbb R$$\end{document} and Pn,Qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n, Q_n$$\end{document} are homogeneous polynomials of degree n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}. Denote by ψ(θ)=cos(θ)·Qn(cos(θ),sin(θ))-sin(θ)·Pn(cos(θ),sin(θ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (\theta )=\cos (\theta )\cdot Q_n\big (\cos (\theta ),\sin (\theta )\big )-\sin (\theta )\cdot P_n\big (\cos (\theta ),\sin (\theta )\big )$$\end{document}. We prove that if (n-1)aψ(θ)+ψ˙(θ)≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n-1)a\psi (\theta )+\dot{\psi }(\theta )\ne 0$$\end{document}, then the polynomial system has at most 1 limit cycle surrounding the origin, and the multiplicity is no more than 2.
引用
收藏
相关论文
共 71 条
[1]  
Alkoumi NMH(2011)Estimates on the number of limit cycles of a generalized Abel equation Discrete Cont. Dyn. A 31 25-34
[2]  
Torres PJ(2015)Limit cycles of Abel equations of the first kind J. Math. Anal. Appl. 423 734-745
[3]  
Álvarez A(2013)Existence of non-trivial limit cycles in Abel equations with symmetries Nonlinear Anal. Theor. Meth. Appl. 84 18-28
[4]  
Bravo JL(2007)A new uniqueness criterion for the number of periodic orbits of Abel equations J. Differ. Equ. 234 161-176
[5]  
Fernández M(2008)Qualitative tools for studying periodic solutions and bifurcations as applied to the periodically harvested logistic equation Am. Math. Mon. 115 202-219
[6]  
Álvarez MJ(2013)Limit cycles of polynomial differential equations with quintic homogeneous nonlinearities J. Math. Anal. Appl. 407 16-22
[7]  
Bravo JL(1999)Generalized centre conditions and multiplicities for polynomial Abel equations of small degrees Nonlinearity 12 3869-3876
[8]  
Fernández M(2013)Limit cycles of non-autonomous scalar odes with two summands Commun. Pure Appl. Anal. 12–2 1091-1102
[9]  
Álvarez MJ(2009)Limit cycles for some Abel equations having coefficients without fixed signs Int. J. Bifurc. Chaos 19 3869-3876
[10]  
Gasull A(2008)Abel-like differential equations with no periodic solutions J. Math. Anal. Appl. 342 931-942