A System of Coupled Quaternion Matrix Equations with Seven Unknowns and Its Applications

被引:0
作者
Zhuo-Heng He
机构
[1] Shanghai University,Department of Mathematics
来源
Advances in Applied Clifford Algebras | 2019年 / 29卷
关键词
Matrix equations; Quaternion; -Hermitian matrix; General solution; Solvability; 15A09; 15A24; 15B33; 15B57;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a system of coupled quaternion matrix equations with seven unknowns AiXi+YiBi+CiZiDi+FiWGi=Ei\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} A_{i}X_{i}+Y_{i}B_{i}+C_{i}Z_{i}D_{i}+F_{i}WG_{i}=E_{i} \end{aligned}$$\end{document}is considered, where Ai,Bi,Ci,Di,Fi,Gi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{i},B_{i},C_{i},D_{i},F_{i},G_{i}$$\end{document} and Ei\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{i}$$\end{document} are given matrices, Xi,Yi,Zi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{i},Y_{i},Z_{i}$$\end{document} and W are unknowns (i=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(i=1,2)$$\end{document}. Some practical necessary and sufficient conditions for the existence of a solution to this system in terms of ranks and Moore–Penrose inverses are provided. The general solution to the system is given when the solvability conditions are satisfied. Applications that are discussed include the solvability conditions and general solutions to some quaternion matrix equations involving ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-Hermicity. Some examples are given to illustrate the main results.
引用
收藏
相关论文
共 79 条
[51]  
Song GJ(undefined)undefined undefined undefined undefined-undefined
[52]  
Wang QW(undefined)undefined undefined undefined undefined-undefined
[53]  
Took CC(undefined)undefined undefined undefined undefined-undefined
[54]  
Mandic DP(undefined)undefined undefined undefined undefined-undefined
[55]  
Took CC(undefined)undefined undefined undefined undefined-undefined
[56]  
Mandic DP(undefined)undefined undefined undefined undefined-undefined
[57]  
Took CC(undefined)undefined undefined undefined undefined-undefined
[58]  
Mandic DP(undefined)undefined undefined undefined undefined-undefined
[59]  
Took CC(undefined)undefined undefined undefined undefined-undefined
[60]  
Mandic DP(undefined)undefined undefined undefined undefined-undefined