A System of Coupled Quaternion Matrix Equations with Seven Unknowns and Its Applications

被引:0
作者
Zhuo-Heng He
机构
[1] Shanghai University,Department of Mathematics
来源
Advances in Applied Clifford Algebras | 2019年 / 29卷
关键词
Matrix equations; Quaternion; -Hermitian matrix; General solution; Solvability; 15A09; 15A24; 15B33; 15B57;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a system of coupled quaternion matrix equations with seven unknowns AiXi+YiBi+CiZiDi+FiWGi=Ei\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} A_{i}X_{i}+Y_{i}B_{i}+C_{i}Z_{i}D_{i}+F_{i}WG_{i}=E_{i} \end{aligned}$$\end{document}is considered, where Ai,Bi,Ci,Di,Fi,Gi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{i},B_{i},C_{i},D_{i},F_{i},G_{i}$$\end{document} and Ei\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{i}$$\end{document} are given matrices, Xi,Yi,Zi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{i},Y_{i},Z_{i}$$\end{document} and W are unknowns (i=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(i=1,2)$$\end{document}. Some practical necessary and sufficient conditions for the existence of a solution to this system in terms of ranks and Moore–Penrose inverses are provided. The general solution to the system is given when the solvability conditions are satisfied. Applications that are discussed include the solvability conditions and general solutions to some quaternion matrix equations involving ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-Hermicity. Some examples are given to illustrate the main results.
引用
收藏
相关论文
共 79 条
  • [11] He ZH(2017)A system of quaternary coupled Sylvester-type real quaternion matrix equations Electron. J. Linear Algebra. 298 13-2032
  • [12] He ZH(2017)A system of periodic discrete-time coupled Sylvester quaternion matrix equations Appl. Math. Comput. 63 2017-490
  • [13] Agudelo OM(2015)A real quaternion matrix equation with with applications Linear Multilinear Algebra 21 483-48
  • [14] Wang QW(2005)The Acta Math. Sin. 343 26-365
  • [15] De Moor B(2018)-bihermitian solution to a system of real quaternion matrix equations J. Comput. Appl. Math. 58 335-270
  • [16] He ZH(2018)The general J. Appl. Math. Comput. 28 23-292
  • [17] Wang QW(2018)-Hermitian solution to mixed pairs of quaternion matrix Sylvester equations Adv. Appl. Clifford Algebras 28 90-957
  • [18] Zhang Y(2018)Simultaneous decomposition of quaternion matrices involving Adv. Appl. Clifford Algebras 320 264-826
  • [19] He ZH(2018)-Hermicity with applications Appl. Math. Comput. 2 269-3121
  • [20] Wang QW(1974)The general solutions to some systems of matrix equations Linear Multilinear Algebra 265 945-224