A System of Coupled Quaternion Matrix Equations with Seven Unknowns and Its Applications

被引:0
作者
Zhuo-Heng He
机构
[1] Shanghai University,Department of Mathematics
来源
Advances in Applied Clifford Algebras | 2019年 / 29卷
关键词
Matrix equations; Quaternion; -Hermitian matrix; General solution; Solvability; 15A09; 15A24; 15B33; 15B57;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a system of coupled quaternion matrix equations with seven unknowns AiXi+YiBi+CiZiDi+FiWGi=Ei\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} A_{i}X_{i}+Y_{i}B_{i}+C_{i}Z_{i}D_{i}+F_{i}WG_{i}=E_{i} \end{aligned}$$\end{document}is considered, where Ai,Bi,Ci,Di,Fi,Gi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{i},B_{i},C_{i},D_{i},F_{i},G_{i}$$\end{document} and Ei\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{i}$$\end{document} are given matrices, Xi,Yi,Zi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{i},Y_{i},Z_{i}$$\end{document} and W are unknowns (i=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(i=1,2)$$\end{document}. Some practical necessary and sufficient conditions for the existence of a solution to this system in terms of ranks and Moore–Penrose inverses are provided. The general solution to the system is given when the solvability conditions are satisfied. Applications that are discussed include the solvability conditions and general solutions to some quaternion matrix equations involving ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-Hermicity. Some examples are given to illustrate the main results.
引用
收藏
相关论文
共 79 条
  • [1] Aghamollaei Gh(2018)On quaternionic numerical ranges with respect to nonstandard involutions Linear Algebra Appl. 540 11-25
  • [2] Rahjoo M(2017)Generalization of Roth’s solvability criteria to systems of matrix equations Linear Algebra Appl. 527 294-302
  • [3] Dmytryshyn A(2016)Roth’s solvability criteria for the matrix equations Linear Algebra Appl. 510 246-258
  • [4] Futorny V(2019) and Adv. Appl. Clifford Algebras 29 6-593
  • [5] Klymchuk T(2019) over the skew field of quaternions with an involutive automorphism Bull. Iran. Math. Soc. 496 549-31
  • [6] Sergeichuk VV(2016)Structure, properties and applications of some simultaneous decompositions for quaternion matrices involving Linear Algebra Appl. 87 25-180
  • [7] Futorny V(2018)-skew-Hermicity Automatica 24 169-740
  • [8] Klymchuk T(2017)The general solution to a system of coupled Sylvester-type quaternion tensor equations involving Algebra Colloq. 61 725-1528
  • [9] Sergeichuk VV(2013)-Hermicity Linear Multilinear Algebra 62 1509-499
  • [10] He ZH(2014)Two-sided coupled generalized Sylvester matrix equations solving using a simultaneous decomposition for fifteen matrices Linear Multilinear Algebra 32 475-35