A Theory of Infinitary Relations Extending Zermelo’s Theory of Infinitary Propositions

被引:0
作者
R. Gregory Taylor
机构
[1] City University of New York,Department of Philosophy, Baruch College
来源
Studia Logica | 2016年 / 104卷
关键词
Definable set; Incompleteness Theorem for Peano Arithmetic; Infinitary relation; Russell’s substitutional theory; Zermelo set theory;
D O I
暂无
中图分类号
学科分类号
摘要
An idea attributable to Russell serves to extend Zermelo’s theory of systems of infinitely long propositions to infinitary relations. Specifically, relations over a given domain D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{D}}$$\end{document} of individuals will now be identified with propositions over an auxiliary domain D*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{D}^{\mathord{\ast}}}$$\end{document} subsuming D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{D}}$$\end{document}. Three applications of the resulting theory of infinitary relations are presented. First, it is used to reconstruct Zermelo’s original theory of urelements and sets in a manner that achieves most, if not all, of his early aims. Second, the new account of infinitary relations makes possible a concise characterization of parametric definability with respect to a purely relational structure. Finally, based on his foundational philosophy of the primacy of the infinite, Zermelo rejected Gödel’s First Incompleteness Theorem; it is shown that the new theory of infinitary relations can be brought to bear, positively, in that connection as well.
引用
收藏
页码:277 / 304
页数:27
相关论文
共 1 条
[1]  
Taylor R. G.(1993)Zermelo, reductionism, and the philosophy of mathematics Notre Dame Journal of Formal Logic 34 539-563