An idea attributable to Russell serves to extend Zermelo’s theory of systems of infinitely long propositions to infinitary relations. Specifically, relations over a given domain D\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathfrak{D}}$$\end{document} of individuals will now be identified with propositions over an auxiliary domain D*\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathfrak{D}^{\mathord{\ast}}}$$\end{document} subsuming D\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathfrak{D}}$$\end{document}. Three applications of the resulting theory of infinitary relations are presented. First, it is used to reconstruct Zermelo’s original theory of urelements and sets in a manner that achieves most, if not all, of his early aims. Second, the new account of infinitary relations makes possible a concise characterization of parametric definability with respect to a purely relational structure. Finally, based on his foundational philosophy of the primacy of the infinite, Zermelo rejected Gödel’s First Incompleteness Theorem; it is shown that the new theory of infinitary relations can be brought to bear, positively, in that connection as well.