Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: steady-state, homogeneous regimes

被引:0
|
作者
S. S. Zilitinkevich
T. Elperin
N. Kleeorin
I. Rogachevskii
机构
[1] University of Helsinki,Division of Atmospheric Sciences
[2] Finnish Meteorological Institute,Nansen Environmental and Remote Sensing Centre
[3] Bjerknes Centre for Climate Research,Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering
[4] Ben-Gurion University of the Negev,undefined
来源
Boundary-Layer Meteorology | 2007年 / 125卷
关键词
Anisotropy; Critical Richardson number; Eddy viscosity; Heat conductivity; Kinetic, potential and total turbulent energies; Stable stratification; Turbulence closure; Turbulent fluxes; Turbulent length scale;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a new turbulence closure model based on the budget equations for the key second moments: turbulent kinetic and potential energies: TKE and TPE (comprising the turbulent total energy: TTE = TKE + TPE) and vertical turbulent fluxes of momentum and buoyancy (proportional to potential temperature). Besides the concept of TTE, we take into account the non-gradient correction to the traditional buoyancy flux formulation. The proposed model permits the existence of turbulence at any gradient Richardson number, Ri. Instead of the critical value of Richardson number separating—as is usually assumed—the turbulent and the laminar regimes, the suggested model reveals a transitional interval, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.1 < {\rm Ri} < 1$$\end{document} , which separates two regimes of essentially different nature but both turbulent: strong turbulence at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm Ri} \ll 1$$\end{document} ; and weak turbulence, capable of transporting momentum but much less efficient in transporting heat, at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm Ri} > 1$$\end{document} . Predictions from this model are consistent with available data from atmospheric and laboratory experiments, direct numerical simulation and large-eddy simulation.
引用
收藏
页码:167 / 191
页数:24
相关论文
共 7 条
  • [1] Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: steady-state, homogeneous regimes
    Zilitinkevich, S. S.
    Elperin, T.
    Kleeorin, N.
    Rogachevskii, I.
    BOUNDARY-LAYER METEOROLOGY, 2007, 125 (02) : 167 - 191
  • [2] A Hierarchy of Energy- and Flux-Budget (EFB) Turbulence Closure Models for Stably-Stratified Geophysical Flows
    Zilitinkevich, S. S.
    Elperin, T.
    Kleeorin, N.
    Rogachevskii, I.
    Esau, I.
    BOUNDARY-LAYER METEOROLOGY, 2013, 146 (03) : 341 - 373
  • [3] Energy- and Flux-Budget Turbulence Closure Model for Stably Stratified Flows. Part II: The Role of Internal Gravity Waves
    Zilitinkevich, S. S.
    Elperin, T.
    Kleeorin, N.
    L'vov, V.
    Rogachevskii, I.
    BOUNDARY-LAYER METEOROLOGY, 2009, 133 (02) : 139 - 164
  • [4] A Hierarchy of Energy- and Flux-Budget (EFB) Turbulence Closure Models for Stably-Stratified Geophysical Flows
    S. S. Zilitinkevich
    T. Elperin
    N. Kleeorin
    I. Rogachevskii
    I. Esau
    Boundary-Layer Meteorology, 2013, 146 : 341 - 373
  • [5] Energy- and Flux-Budget Turbulence Closure Model for Stably Stratified Flows. Part II: The Role of Internal Gravity Waves
    S. S. Zilitinkevich
    T. Elperin
    N. Kleeorin
    V. L’vov
    I. Rogachevskii
    Boundary-Layer Meteorology, 2009, 133 : 139 - 164
  • [6] On dissipation timescales of the basic second-order moments: the effect on the energy and flux budget (EFB) turbulence closure for stably stratified turbulence
    Kadantsev, Evgeny
    Mortikov, Evgeny
    Glazunov, Andrey
    Kleeorin, Nathan
    Rogachevskii, Igor
    NONLINEAR PROCESSES IN GEOPHYSICS, 2024, 31 (03) : 395 - 408
  • [7] Internal gravity waves in the energy and flux budget turbulence-closure theory for shear-free stably stratified flows
    Kleeorin, N.
    Rogachevskii, I
    Soustova, I. A.
    Troitskaya, Yu, I
    Ermakova, O. S.
    Zilitinkevich, S.
    PHYSICAL REVIEW E, 2019, 99 (06)