On the Regularity of Weak Solutions of the Boussinesq Equations in Besov Spaces

被引:0
作者
Annamaria Barbagallo
Sadek Gala
Maria Alessandra Ragusa
Michel Théra
机构
[1] University of Naples “Federico II”,Department of Mathematics and Applications “R. Caccioppoli”
[2] Ecole Normale Supérieure de Mostaganem,Department of Sciences exactes
[3] Università di Catania,Dipartimento di Matematica e Informatica
[4] RUDN University,Centre for Informatics and Applied Optimisation
[5] XLIM UMR-CNRS 7252 Université de Limoges,undefined
[6] Federation University Australia,undefined
来源
Vietnam Journal of Mathematics | 2021年 / 49卷
关键词
Boussinesq equations; Besov space; Weak solution; Regularity criterion; 35Q35; 35B65; 76D05;
D O I
暂无
中图分类号
学科分类号
摘要
The main issue addressed in this paper concerns an extension of a result by Z. Zhang who proved, in the context of the homogeneous Besov space Ḃ∞,∞−1(ℝ3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot {B}_{\infty ,\infty }^{-1}(\mathbb {R}^{3})$\end{document}, that, if the solution of the Boussinesq equation (1) below (starting with an initial data in H2) is such that (∇u,∇𝜃)∈L2(0,T;Ḃ∞,∞−1(ℝ3))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\nabla u,\nabla \theta )\in L^{2}(0,T;\dot {B}_{\infty ,\infty }^{-1}(\mathbb {R}^{3}))$\end{document}, then the solution remains smooth forever after T. In this contribution, we prove the same result for weak solutions just by assuming the condition on the velocity u and not on the temperature 𝜃.
引用
收藏
页码:637 / 649
页数:12
相关论文
共 47 条
[1]  
Abidi H(2007)On the global well-posedness for Boussinesq system J. Differ. Equ. 233 199-220
[2]  
Hmidi T(1981)Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires Ann. Sci. École Norm. Sup. (4) 14 209-246
[3]  
Bony J-M(1999)Local existence and blow-up criterion of Hölder continuous solutions of the Boussinesq equations Nagoya Math. J. 155 55-80
[4]  
Chae D(1997)Local existence and blow-up criterion for the Boussinesq equations Proc. Roy. Soc. Edinb. Sect. A 127 935-946
[5]  
Kim S-K(2008)Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces Phys. D 237 1444-1460
[6]  
Nam H-S(2008)Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux Bull. Soc. Math. Fr. 136 261-309
[7]  
Chae D(1991)Large time behavior for convection-diffusion equations in $\mathbb {R}^{N}$ℝN J. Funct. Anal. 100 119-161
[8]  
Nam H-S(2009)Regularity criteria for the 3D density-dependent Boussinesq equations Nonlinearity 22 553-568
[9]  
Danchin R(2009)A note on regularity criterion for the 3D Boussinesq system with partial viscosity Appl. Math. Lett. 22 802-805
[10]  
Paicu M(2014)A remark on the regularity criterion of Boussinesq equations with zero heat conductivity Appl. Math. Lett. 27 70-73