Upper bounds on the depth of symmetric Boolean functions

被引:1
|
作者
Sergeev I.S. [1 ]
机构
[1] Moscow State University, Moscow
基金
俄罗斯基础研究基金会;
关键词
Boolean circuits; Depth; majority function; multiplication; symmetric Boolean functions;
D O I
10.3103/S0278641913040080
中图分类号
学科分类号
摘要
A new method for implementing the counting function with Boolean circuits is proposed. It is based on modular arithmetic and allows us to derive new upper bounds for the depth of the majority function of n variables: 3.34log2 n over the basis B 2 of all binary Boolean functions and 4.87log2 n over the standard basis B 0 = {∧, ∨, -}. As a consequence, the depth of the multiplication of n-digit binary numbers does not exceed 4.34log2 n and 5.87log2 n over the bases B 2 and B 0, respectively. The depth of implementation of an arbitrary symmetric Boolean function of n variables is shown to obey the bounds 3.34log2 n and 4.88log2 n over the same bases. © 2013 Allerton Press, Inc.
引用
收藏
页码:195 / 201
页数:6
相关论文
共 50 条
  • [1] Upper bounds on the multiplicative complexity of symmetric Boolean functions
    Brandao, Luis T. A. N.
    Calik, Cagdas
    Sonmez Turan, Meltem
    Peralta, Rene
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (06): : 1339 - 1362
  • [2] Upper Bounds for the Formula Size of Symmetric Boolean Functions
    Sergeev, I. S.
    RUSSIAN MATHEMATICS, 2014, 58 (05) : 30 - 42
  • [3] Upper bounds on the multiplicative complexity of symmetric Boolean functions
    Luís T. A. N. Brandão
    Çağdaş Çalık
    Meltem Sönmez Turan
    René Peralta
    Cryptography and Communications, 2019, 11 : 1339 - 1362
  • [4] Upper bounds for the complexity of sequences generated by symmetric Boolean functions
    Merekin, YV
    DISCRETE APPLIED MATHEMATICS, 2001, 114 (1-3) : 227 - 231
  • [5] New upper bounds on the Boolean circuit complexity of symmetric functions
    Demenkov, E.
    Kojevnikov, A.
    Kulikov, A.
    Yaroslavtsev, G.
    INFORMATION PROCESSING LETTERS, 2010, 110 (07) : 264 - 267
  • [6] CIRCUIT DEPTH OF SYMMETRIC BOOLEAN FUNCTIONS
    MCCOLL, WF
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1978, 17 (01) : 108 - 115
  • [7] Complexity and depth of formulas for symmetric Boolean functions
    Sergeev, I. S.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2016, 71 (03) : 127 - 130
  • [8] Depth Optimized Synthesis of Symmetric Boolean Functions
    Schnieber, Martha
    Froehlich, Saman
    Drechsler, Rolf
    2021 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2021), 2021, : 61 - 66
  • [9] Upper bounds on algebraic immunity of boolean power functions
    Nawaz, Yassir
    Gong, Guang
    Gupta, Kishan Chand
    FAST SOFTWARE ENCRYPTION, 2006, 4047 : 375 - 389
  • [10] Hilbert function and complexity lower bounds for symmetric Boolean functions
    Bernasconi, A
    Egidi, L
    INFORMATION AND COMPUTATION, 1999, 153 (01) : 1 - 25