Mass Transportation on Sub-Riemannian Manifolds

被引:0
|
作者
Alessio Figalli
Ludovic Rifford
机构
[1] The University of Texas at Austin,Department of Mathematics
[2] Université de Nice-Sophia Antipolis,undefined
[3] Labo. J.-A. Dieudonné,undefined
[4] UMR 6621,undefined
来源
关键词
Optimal transport; sub-Riemannian geometry; 49Q20; 53C17;
D O I
暂无
中图分类号
学科分类号
摘要
We study the optimal transport problem in sub-Riemannian manifolds where the cost function is given by the square of the sub-Riemannian distance. Under appropriate assumptions, we generalize Brenier–McCann’s theorem proving existence and uniqueness of the optimal transport map. We show the absolute continuity property of Wassertein geodesics, and we address the regularity issue of the optimal map. In particular, we are able to show its approximate differentiability a.e. in the Heisenberg group (and under some weak assumptions on the measures the differentiability a.e.), which allows us to write a weak form of the Monge–Ampère equation.
引用
收藏
页码:124 / 159
页数:35
相关论文
共 50 条
  • [31] DIFFUSION IN SMALL TIME IN INCOMPLETE SUB-RIEMANNIAN MANIFOLDS
    Bailleul, Ismael
    Norris, James
    ANALYSIS & PDE, 2022, 15 (01): : 63 - 84
  • [32] Surface measure on, and the local geometry of, sub-Riemannian manifolds
    Don, Sebastiano
    Magnani, Valentino
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (09)
  • [33] Carnot rectifiability of sub-Riemannian manifolds with constant tangent
    Le Donne, Enrico
    Young, Robert
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2023, 24 (01) : 71 - 96
  • [34] CORNERS IN NON-EQUIREGULAR SUB-RIEMANNIAN MANIFOLDS
    Le Donne, Enrico
    Leonardi, Gian Paolo
    Monti, Roberto
    Vittone, Davide
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2015, 21 (03) : 625 - 634
  • [35] Cartan Connections for Stochastic Developments on sub-Riemannian Manifolds
    Beschastnyi, Ivan
    Habermann, Karen
    Medvedev, Alexandr
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (01)
  • [36] Existence of isoperimetric regions in contact sub-Riemannian manifolds
    Galli, Matteo
    Ritore, Manuel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 397 (02) : 697 - 714
  • [37] Volume and distance comparison theorems for sub-Riemannian manifolds
    Baudoin, Fabrice
    Bonnefont, Michel
    Garofalo, Nicola
    Munive, Isidro H.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (07) : 2005 - 2027
  • [38] Conformality and Q-harmonicity in sub-Riemannian manifolds
    Capogna, Luca
    Citti, Giovanna
    Le Donne, Enrico
    Ottazzi, Alessandro
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 122 : 67 - 124
  • [39] Sub-Riemannian Geometry on Infinite-Dimensional Manifolds
    Grong, Erlend
    Markina, Irina
    Vasil'ev, Alexander
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (04) : 2474 - 2515
  • [40] Sub-Riemannian Geometry on Infinite-Dimensional Manifolds
    Erlend Grong
    Irina Markina
    Alexander Vasil’ev
    The Journal of Geometric Analysis, 2015, 25 : 2474 - 2515