Spectral Analysis for Some Multifractional Gaussian Processes

被引:0
作者
A. I. Karol
A. I. Nazarov
机构
[1] St.Petersburg State University,
[2] St.Petersburg Department of Steklov Mathematical Institute of Russian Academy of Science,undefined
来源
Russian Journal of Mathematical Physics | 2021年 / 28卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:488 / 500
页数:12
相关论文
共 42 条
[11]  
Birman M. Sh.(1999)From Self-Similarity to Local Self-Similarity : the Estimation Problem In Fractals: Theory and Applications in Engineering. M. Dekking, J. Lévy Véhel, E. Lutton and C. Tricot (Eds). Springer Verlag 0 3-316
[12]  
Solomyak M. Z.(2019)The Asymptotic Behavior of Singular Numbers of Compact Pseudodifferential Operators with Symbol Nonsmooth in Spatial Variables Func. Anal. Appl. 53 313-686
[13]  
Birman M. Sh.(2020)The Singular Values of Compact Pseudodifferential Operators with Spatially Nonsmooth Symbols Siberian Math. J. 61 671-1474
[14]  
Solomyak M. Z.(2008)Small Ball Probabilities for Gaussian Random Fields and Tensor Products of Compact Operators Trans. Amer. Math. Soc. 360 1443-352
[15]  
Birman M. S.(1985)Regularized Distance and Its Applications Pacific J. Math. 117 329-486
[16]  
Solomyak M. Z.(2009)Log-Level Comparison Principle for Small Ball Probabilities Statist. Probab. Lett. 79 481-665
[17]  
Bronski J. C.(2009)Exact J. Theoret. Probab. 22 640-25
[18]  
Chigansky P.(2020)-Small Ball Asymptotics of Gaussian Processes and the Spectrum of Boundary-Value Problems Commun. Contemp. Math 0 1-494
[19]  
Kleptsyna M.(2004)Spectral Asymptotics for a Class of Integro-Differential Equations Arising in the Theory of Fractional Gaussian Processes, DOI 10.1142/S0219199720500492 Probab. Theory Related Fields 129 469-711
[20]  
Coeurjolly J. F.(2004)Exact Small Ball Behavior of Integrated Gaussian Processes under Teor. Veroyatnost. i Primenen. 49 695-9