Spectral Analysis for Some Multifractional Gaussian Processes

被引:0
作者
A. I. Karol
A. I. Nazarov
机构
[1] St.Petersburg State University,
[2] St.Petersburg Department of Steklov Mathematical Institute of Russian Academy of Science,undefined
来源
Russian Journal of Mathematical Physics | 2021年 / 28卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:488 / 500
页数:12
相关论文
共 42 条
[1]  
Ayache A.(2000)The Covariance Structure of Multifractional Brownian Motion, with Application to Long Range Dependence In: IEEE Int. Conf. on Acoustics, Speech, and Signal Processing 6 3810-3813
[2]  
Cohen S.(1998)Identifying the Multifractional Function of a Gaussian Process Statist. Probab. Lett. 39 337-345
[3]  
Véhel J. Lévy(1970)Asymptotic Behavior of the Spectrum of Weakly Polar Integral Operators Izv. AN SSSR. Ser. Mat. 34 1143-1158
[4]  
Benassi A.(1974)Quantitative Analysis in Sobolev Imbedding Theorems and Applications to Spectral Theory In: Proceed. of X Summer Mathematical School. Yu.A. Mitropol’skiy and A.F. Shestopal (Eds) 0 5-189
[5]  
Cohen S.(1977)Estimates of Singular Numbers of Integral Operators Uspekhi Mat. Nauk 32 17-84
[6]  
Istas J.(0000)On the Negative Discrete Spectrum of a Periodic Elliptic Operator in a Waveguide-Type Domain, Perturbed by a Decaying Potential J. Anal. Math. 83 337-391
[7]  
Birman M. S.(2010)Spectral Theory of Self-Adjoint Operators in Hilbert Space 2nd ed., revised and extended. Lan’, St.Petersburg 0 0-100
[8]  
Solomyak M. Z.(2003)Small Ball Constants and Tight Eigenvalue Asymptotics for Fractional Brownian Motions J. Theoret. Probab. 16 87-2059
[9]  
Birman M. S.(2018)Exact Asymptotics in Eigenproblems for Fractional Brownian Covariance Operators Stochastic Process. Appl. 128 2007-1008
[10]  
Solomyak M. Z.(2005)Identification of Multifractional Brownian Motion Bernoulli 11 987-16