Integrable symplectic maps via reduction of Bäcklund transformation

被引:0
|
作者
Dianlou Du
Yuanyuan Liu
Xue Wang
机构
[1] School of Mathematics and Statistics,
[2] Zhengzhou University,undefined
来源
Theoretical and Mathematical Physics | 2021年 / 208卷
关键词
integrable symplectic map; stationary potential KdV equation; Bäcklund transformation; Lax representation;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:886 / 895
页数:9
相关论文
共 50 条
  • [1] Integrable symplectic maps via reduction of Backlund transformation
    Du, Dianlou
    Liu, Yuanyuan
    Wang, Xue
    THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 208 (01) : 886 - 895
  • [2] Integrable discretization of soliton equations via bilinear method and Bäcklund transformation
    YingNan Zhang
    XiangKe Chang
    Juan Hu
    XingBiao Hu
    Hon-Wah Tam
    Science China Mathematics, 2015, 58 : 279 - 296
  • [3] INTEGRABLE SYMPLECTIC MAPS
    BRUSCHI, M
    RAGNISCO, O
    SANTINI, PM
    TU, GZ
    PHYSICA D, 1991, 49 (03): : 273 - 294
  • [4] The classical Bäcklund transformation and integrable discretisation of characteristic equations
    School of Mathematics, University of New South Wales, Sydney, NSW 2052, Australia
    Phys Lett Sect A Gen At Solid State Phys, 3-4 (217-223):
  • [5] Integrable deformations of integrable symplectic maps
    Xia, Baoqiang
    Zhou, Ruguang
    PHYSICS LETTERS A, 2009, 373 (47) : 4360 - 4367
  • [6] The Kinematics of the Planar Motion of Ideal Fiber-Reinforced Fluids: An Integrable Reduction and Bäcklund Transformation
    C. Rogers
    W. K. Schief
    Theoretical and Mathematical Physics, 2003, 137 : 1598 - 1608
  • [7] Bäcklund Transformation for Solving a (3+1)-Dimensional Integrable Equation
    Feng, Binlu
    Gui, Linlin
    Zhang, Yufeng
    Han, Siqi
    AXIOMS, 2025, 14 (03)
  • [8] A finite genus solution of the Hirota equation via integrable symplectic maps
    Cao, Cewen
    Zhang, Guangyao
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (09)
  • [9] Integrable symplectic maps with a polygon tessellation
    Zolkin, T.
    Kharkov, Y.
    Nagaitsev, S.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [10] Degenerate Bäcklund Transformation
    V. A. Gor’kavyi
    E. N. Nevmerzhitskaya
    Ukrainian Mathematical Journal, 2016, 68 : 41 - 56