On finite groups with non-nilpotent subgroups

被引:0
|
作者
Jiakuan Lu
Wei Meng
机构
[1] Guangxi Normal University,School of Mathematics and Statistics
[2] Yunnan Minzu University,School of Mathematics and Computer Science
来源
Monatshefte für Mathematik | 2016年 / 179卷
关键词
Non-nilpotent subgroups; Non-normal subgroups; Solvable groups; 20D10; 20D20;
D O I
暂无
中图分类号
学科分类号
摘要
For a finite group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, let l(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l(G)$$\end{document} denote the number of conjugacy classes of non-normal non-nilpotent subgroups of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. In this paper, we show that every finite group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} satisfying l(G)<|π(G)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l(G)< |\pi (G)|$$\end{document} is solvable, and for a finite non-solvable group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, l(G)=|π(G)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l(G)=|\pi (G)|$$\end{document} if and only if G≅A5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\cong A_5$$\end{document} or SL(2,5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,5)$$\end{document}.
引用
收藏
页码:99 / 103
页数:4
相关论文
共 50 条
  • [41] Restrictions on maximal invariant subgroups implying solvability of finite groups
    Beltran, Antonio
    Shao, Changguo
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (02) : 357 - 366
  • [42] FINITE p-GROUPS WHOSE NORMAL CLOSURES OF NON-NORMAL SUBGROUPS HAVE TWO ORDERS
    Wang, Lifang
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (04) : 805 - 819
  • [43] A constructive approach: From local subgroups to new classes of finite groups
    Shen, Zhencai
    Zhang, Baoyu
    Jiang, Haonan
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (02): : 420 - 425
  • [44] INFLUENCE OF STRONGLY CLOSED 2-SUBGROUPS ON THE STRUCTURE OF FINITE GROUPS
    Tong-Viet, Hung P.
    GLASGOW MATHEMATICAL JOURNAL, 2011, 53 : 577 - 581
  • [45] CONJUGACY CLASSES OF SUBGROUPS OF FINITE p-GROUPS: THE FIRST GAP
    Brandl, R.
    ISCHIA GROUP THEORY 2010, 2012, : 39 - 44
  • [46] FINITE SOLVABLE TIDY GROUPS ARE DETERMINED BY HALL SUBGROUPS WITH TWO PRIMES
    Beike, Nicolas F.
    Carleton, Rachel
    Costanzo, David G.
    Heath, Colin
    Lewis, Mark L.
    Lu, Kaiwen
    Pearce, Jamie D.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (02) : 342 - 349
  • [47] The number of conjugacy classes of nonnormal subgroups of finite p-groups
    Li, Lili
    Qu, Haipeng
    JOURNAL OF ALGEBRA, 2016, 466 : 44 - 62
  • [48] The number of conjugacy classes of nonnormal subgroups of finite p-groups (III)
    Li, Lili
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (06)
  • [49] The number of conjugacy classes of nonnormal subgroups of finite p-groups (II)
    Li, Lili
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (03) : 1099 - 1113
  • [50] Finite groups whose automizers of all abelian subgroups are either small or large
    Meng, Wei
    Yao, Hailou
    Lu, Jiakuan
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (02) : 684 - 688