On finite groups with non-nilpotent subgroups

被引:0
|
作者
Jiakuan Lu
Wei Meng
机构
[1] Guangxi Normal University,School of Mathematics and Statistics
[2] Yunnan Minzu University,School of Mathematics and Computer Science
来源
Monatshefte für Mathematik | 2016年 / 179卷
关键词
Non-nilpotent subgroups; Non-normal subgroups; Solvable groups; 20D10; 20D20;
D O I
暂无
中图分类号
学科分类号
摘要
For a finite group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, let l(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l(G)$$\end{document} denote the number of conjugacy classes of non-normal non-nilpotent subgroups of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. In this paper, we show that every finite group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} satisfying l(G)<|π(G)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l(G)< |\pi (G)|$$\end{document} is solvable, and for a finite non-solvable group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, l(G)=|π(G)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l(G)=|\pi (G)|$$\end{document} if and only if G≅A5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\cong A_5$$\end{document} or SL(2,5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,5)$$\end{document}.
引用
收藏
页码:99 / 103
页数:4
相关论文
共 50 条
  • [31] On Finite Groups with Some Minimal Subgroups Weakly Supplemented
    Kong, Qingjun
    Li, Jingdi
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (04) : 2989 - 2994
  • [32] NOMALIZERS OF NONNORMAL SUBGROUPS OF FINITE p-GROUPS
    Zhang, Qinhai
    Gao, Juan
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (01) : 201 - 221
  • [33] On Finite Groups with Some Minimal Subgroups Weakly Supplemented
    Qingjun Kong
    Jingdi Li
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 2989 - 2994
  • [34] On weakly-supplemented subgroups and the structure of finite groups
    Kong Q.
    Liu Q.
    Ricerche di Matematica, 2014, 63 (2) : 253 - 259
  • [35] Finite groups all of whose second maximal subgroups are Hp-groups
    Zhong, Xianggui
    Lu, Jiakuan
    Li, Yonggang
    MONATSHEFTE FUR MATHEMATIK, 2013, 172 (3-4): : 477 - 486
  • [36] Finite groups whose maximal subgroups of even order are MSN-groups
    Wang, Wanlin
    Guo, Pengfei
    OPEN MATHEMATICS, 2022, 20 (01): : 1800 - 1807
  • [37] Finite Groups containing Certain Abelian TI-subgroups
    Salarian, M. Reza
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2012, 19 (01) : 41 - 45
  • [38] Finite groups whose all second maximal subgroups are cyclic
    Ma, Li
    Meng, Wei
    Ma, Wanqing
    OPEN MATHEMATICS, 2017, 15 : 611 - 615
  • [39] Restrictions on maximal invariant subgroups implying solvability of finite groups
    Antonio Beltrán
    Changguo Shao
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 357 - 366
  • [40] Finite p-Groups and Normal Closures of Nonnormal Subgroups
    Junqiang ZHANG
    Ruijiao LU
    Wentian LI
    Journal of Mathematical Research with Applications, 2015, 35 (05) : 521 - 528