On finite groups with non-nilpotent subgroups

被引:0
|
作者
Jiakuan Lu
Wei Meng
机构
[1] Guangxi Normal University,School of Mathematics and Statistics
[2] Yunnan Minzu University,School of Mathematics and Computer Science
来源
Monatshefte für Mathematik | 2016年 / 179卷
关键词
Non-nilpotent subgroups; Non-normal subgroups; Solvable groups; 20D10; 20D20;
D O I
暂无
中图分类号
学科分类号
摘要
For a finite group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, let l(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l(G)$$\end{document} denote the number of conjugacy classes of non-normal non-nilpotent subgroups of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. In this paper, we show that every finite group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} satisfying l(G)<|π(G)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l(G)< |\pi (G)|$$\end{document} is solvable, and for a finite non-solvable group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}, l(G)=|π(G)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l(G)=|\pi (G)|$$\end{document} if and only if G≅A5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\cong A_5$$\end{document} or SL(2,5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,5)$$\end{document}.
引用
收藏
页码:99 / 103
页数:4
相关论文
共 50 条
  • [1] On finite groups with non-nilpotent subgroups
    Lu, Jiakuan
    Meng, Wei
    MONATSHEFTE FUR MATHEMATIK, 2016, 179 (01): : 99 - 103
  • [2] Finite groups with non-nilpotent maximal subgroups
    Lu, Jiakuan
    Pang, Linna
    Zhong, Xianggui
    MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4): : 425 - 431
  • [3] Finite groups with non-nilpotent maximal subgroups
    Jiakuan Lu
    Linna Pang
    Xianggui Zhong
    Monatshefte für Mathematik, 2013, 171 : 425 - 431
  • [4] Groups with few non-nilpotent subgroups
    Brandl, Rolf
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (10)
  • [5] Finite non-nilpotent groups with two conjugacy classes of non-normal non-cyclic subgroups
    Brandl, Rolf
    Rezazadeh, Zahra
    Taeri, Bijan
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 96 (3-4): : 459 - 474
  • [6] The number of conjugacy classes of noncyclic subgroups of finite nilpotent groups
    Wei, Boyan
    Chen, Yinan
    Liang, Xingliang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [7] On finite groups with non-subnormal subgroups
    Lu, Jiakuan
    Meng, Wei
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (05) : 2043 - 2046
  • [8] Finite groups with few non-normal subgroups
    Lu, Jiakuan
    Pang, Linna
    Qiu, Yanyan
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (04)
  • [9] ON SOLVABILITY OF FINITE GROUPS WITH FEW NON-NORMAL SUBGROUPS
    Lu, Jiakuan
    Meng, Wei
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (05) : 1752 - 1756
  • [10] The structure of finite groups with trait of non-normal subgroups
    Mousavi, Hamid
    Tiemouri, Goli
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (03) : 1023 - 1028