Well-posedness and regularity of fractional Rayleigh–Stokes problems

被引:0
|
作者
Jing Na Wang
Yong Zhou
Ahmed Alsaedi
Bashir Ahmad
机构
[1] Xiangtan University,Faculty of Mathematics and Computational Science
[2] King Abdulaziz University,Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science
关键词
Rayleigh–Stokes problem; Riemann–Liouville fractional derivative; Galerkin method; Weak solution; 35R11; 35D30; 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is to analyse the Rayleigh–Stokes problem for a heated generalized second-grade fluid with Riemann–Liouville fractional derivative. By virtue of the Galerkin method, the existence, uniqueness and regularity of weak solutions in L∞(0,b;L2(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }(0,b;L^2(\Omega ))$$\end{document}⋂L2(0,b;H01(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigcap L^2(0,b;H_0^1(\Omega ))$$\end{document} of the proposed problem are obtained. Furthermore, we prove an improved regularity result of weak solutions in the case of h∈H2(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\in H^2(\Omega )$$\end{document} and f∈L2(0,b;L2(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in L^2(0,b;L^2(\Omega ))$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Well-posedness and regularity of fractional Rayleigh-Stokes problems
    Wang, Jing Na
    Zhou, Yong
    Alsaedi, Ahmed
    Ahmad, Bashir
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (04):
  • [2] On well-posedness of semilinear Rayleigh-Stokes problem with fractional derivative on RN
    He, Jia Wei
    Zhou, Yong
    Peng, Li
    Ahmad, Bashir
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 580 - 597
  • [3] Well-posedness and regularity for fractional damped wave equations
    Zhou, Yong
    He, Jia Wei
    MONATSHEFTE FUR MATHEMATIK, 2021, 194 (02): : 425 - 458
  • [4] Well-posedness and regularity for fractional damped wave equations
    Yong Zhou
    Jia Wei He
    Monatshefte für Mathematik, 2021, 194 : 425 - 458
  • [5] The Well-Posedness Results of Solutions in Besov-Morrey Spaces for Fractional Rayleigh-Stokes Equations
    Li Peng
    Yong Zhou
    Qualitative Theory of Dynamical Systems, 2024, 23
  • [6] The Well-Posedness Results of Solutions in Besov-Morrey Spaces for Fractional Rayleigh-Stokes Equations
    Peng, Li
    Zhou, Yong
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
  • [7] Well-posedness and blow-up results for a class of nonlinear fractional Rayleigh-Stokes problem
    Wang, Jing Na
    Alsaedi, Ahmed
    Ahmad, Bashir
    Zhou, Yong
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 1579 - 1597
  • [8] Well-posedness and regularity results for a class of fractional Langevin diffusion equations
    Wang, Sen
    Zhou, Xian-Feng
    Jiang, Wei
    Pang, Denghao
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (06) : 2675 - 2719
  • [9] Well-posedness and regularity for a generalized fractional Cahn-Hilliard system
    Cow, Pierluigi
    Gilardi, Gianni
    Sprekels, Juergen
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2019, 30 (03) : 437 - 478
  • [10] Well-posedness, regularity and asymptotic analyses for a fractional phase field system
    Colli, Pierluigi
    Gilardi, Gianni
    ASYMPTOTIC ANALYSIS, 2019, 114 (1-2) : 93 - 128