A weak form of amenability of topological semigroups and its applications in ergodic and fixed point theories

被引:0
作者
Ali Ebadian
Madjid Eshaghi Gordji
Ali Jabbari
机构
[1] Urmia University,Department of Mathematics, Faculty of Science
[2] Semnan University,Department of Mathematics
来源
Collectanea Mathematica | 2023年 / 74卷
关键词
Character; Character amenability; Ergodic theory; Fixed point property; Hahn-Banach property; Semi-character; Semigroup; Primary: 43A07; 22D15; Secondary: 22A20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a weak form of amenability on topological semigroups that we call φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-amenability, where φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} is a character on a topological semigroup. Some basic properties of this new notion are obtained and by giving some examples, we show that this definition is weaker than the amenability of semigroups. As a noticeable result, for a topological semigroup S, it is shown that if S is φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-amenable, then S is amenable. Moreover, φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-ergodicity for a topological semigroup S is introduced and it is proved that under some conditions on S and a Banach space X, φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-amenability and φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-ergodicity of any antirepresntation defined by a right action S on X, are equivalent. A relation between φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-amenability of topological semigroups and the existence of a common fixed point is investigated and by this relation, Hahn-Banach property of topological semigroups in the sense of φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-amenability defined and studied.
引用
收藏
页码:149 / 171
页数:22
相关论文
共 27 条
  • [1] Baker AC(1969)Duality of topological semigroups with involution J. London Math. Soc. 44 251-260
  • [2] Baker JW(1988)Extension of characters on Math. Ann. 282 251-258
  • [3] Bisgaard TM(1949)-semigroups Trans. Am. Math. Soc. 67 217-240
  • [4] Eberlein W(2010)Abstract ergodic theorems and weak almost periodic functions Mem. Am. Math. Soc. 5 130-291
  • [5] Dales HG(1950)Banach algebras on semigroups and on their compactifications Trans. Am. Math. Soc. 69 276-544
  • [6] Lau AM(1957)Means for the bounded functions and ergodicity of the bounded representations on semigroups Illinois J. Math. 1 509-451
  • [7] Strauss D(1965)Amenable semigroups Indug. Math. 27 447-360
  • [8] Day M(1988)Invariant subspaces for a semigroup of linear operators Proc. R. Soc. Edinburgh Sect. A 110 351-96
  • [9] Day M(1972)Amenability of weighted discrete semigroup convolution algebras Mem. Am. Math. Soc. Providence RI 127 69-106
  • [10] Fan K(2008)Cohomology in Banach algebras Math. Proc. Camb. Phil. Soc. 144 85-319