Commutative bounded integral residuated orthomodular lattices are Boolean algebras

被引:0
作者
Josef Tkadlec
Esko Turunen
机构
[1] Czech Technical University,
[2] Tampere University of Technology,undefined
来源
Soft Computing | 2010年 / 15卷
关键词
Residuated lattice; Orthomodular lattice;
D O I
暂无
中图分类号
学科分类号
摘要
We show that a commutative bounded integral orthomodular lattice is residuated iff it is a Boolean algebra. This result is a consequence of (Ward, Dilworth in Trans Am Math Soc 45, 336–354, 1939, Theorem 7.31); however, out proof is independent and uses other instruments.
引用
收藏
页码:635 / 636
页数:1
相关论文
共 50 条
[11]   Derivations of Commutative Residuated Lattices [J].
M. Kondo .
Bulletin of the Iranian Mathematical Society, 2018, 44 :93-100
[12]   Derivations of Commutative Residuated Lattices [J].
Kondo, M. .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (01) :93-100
[13]   Representable pseudo-BCK-algebras and integral residuated lattices [J].
Kuehr, Jan .
JOURNAL OF ALGEBRA, 2007, 317 (01) :354-364
[14]   Local bounded commutative residuated ℓ-monoids [J].
Jiří Rachůnek ;
Dana Šalounová .
Czechoslovak Mathematical Journal, 2007, 57 :395-406
[15]   Representable idempotent commutative residuated lattices [J].
Raftery, J. G. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (09) :4405-4427
[16]   Non-commutative Hyper Residuated Lattices and Hyper Pseudo-BCK algebras [J].
Zhang, Xiaohong ;
Zhan, Qiuyan ;
Wang, Xueping .
2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, :2277-2282
[17]   Orthomodular lattices as L-algebras [J].
Yali Wu ;
Yichuan Yang .
Soft Computing, 2020, 24 :14391-14400
[18]   Residuated EQ-algebras may not be residuated lattices [J].
Xin, Xiao Long .
FUZZY SETS AND SYSTEMS, 2020, 382 :120-128
[19]   Orthomodular lattices asL-algebras [J].
Wu, Yali ;
Yang, Yichuan .
SOFT COMPUTING, 2020, 24 (19) :14391-14400
[20]   FREE REPRESENTABLE IDEMPOTENT COMMUTATIVE RESIDUATED LATTICES [J].
Olson, Jeffrey S. .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2008, 18 (08) :1365-1394