Commutative bounded integral residuated orthomodular lattices are Boolean algebras

被引:0
作者
Josef Tkadlec
Esko Turunen
机构
[1] Czech Technical University,
[2] Tampere University of Technology,undefined
来源
Soft Computing | 2010年 / 15卷
关键词
Residuated lattice; Orthomodular lattice;
D O I
暂无
中图分类号
学科分类号
摘要
We show that a commutative bounded integral orthomodular lattice is residuated iff it is a Boolean algebra. This result is a consequence of (Ward, Dilworth in Trans Am Math Soc 45, 336–354, 1939, Theorem 7.31); however, out proof is independent and uses other instruments.
引用
收藏
页码:635 / 636
页数:1
相关论文
共 50 条
  • [1] Commutative bounded integral residuated orthomodular lattices are Boolean algebras
    Tkadlec, Josef
    Turunen, Esko
    SOFT COMPUTING, 2011, 15 (04) : 635 - 636
  • [2] n-Fold Boolean, Implicative and Integral Ideals on Bounded Commutative Residuated Lattices
    Yinga, Fabrice Tchoua
    Njionou, Blaise B. Koguep
    Alomo, Etienne R. Temgoua
    Lele, Celestin
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2019, 15 (03) : 427 - 445
  • [3] States on bounded commutative residuated lattices
    Kondo, Michiro
    MATHEMATICA SLOVACA, 2014, 64 (05) : 1093 - 1104
  • [4] Orthomodular lattices that are horizontal sums of Boolean algebras
    Chajda, Ivan
    Laenger, Helmut
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2020, 61 (01): : 11 - 20
  • [5] Generalizations of the correspondence between Boolean algebras and Boolean rings to orthomodular lattices
    Länger, H
    TATRA MOUNTAINS MATHEMATICAL PUBLICATIONS, VOL 15, 1998: QUANTUM STRUCTURES II, 1998, : 97 - 105
  • [6] MONOTONE MODAL OPERATORS ON BOUNDED INTEGRAL RESIDUATED LATTICES
    Rachunek, Jiri
    Svoboda, Zdenek
    MATHEMATICA BOHEMICA, 2012, 137 (03): : 333 - 345
  • [7] Structure of commutative cancellative integral residuated lattices on (0, 1]
    Rostislav Horčík
    Algebra universalis, 2007, 57 : 303 - 332
  • [8] Commutative idempotent residuated lattices
    David Stanovský
    Czechoslovak Mathematical Journal, 2007, 57 : 191 - 200
  • [9] Commutative idempotent residuated lattices
    Stanovsky, David
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2007, 57 (01) : 191 - 200
  • [10] Derivations of Commutative Residuated Lattices
    M. Kondo
    Bulletin of the Iranian Mathematical Society, 2018, 44 : 93 - 100