Transitivity, mixing and chaos for a class of set-valued mappings

被引:0
作者
Gongfu Liao
Lidong Wang
Yucheng Zhang
机构
[1] Jilin University,Institute of Mathematics
[2] Dalian Nations University,Institute of Nonlinear Information Technology
[3] University of Science and Technology of China,Department of Mathematics
来源
Science in China Series A | 2006年 / 49卷
关键词
set-valued mapping; transitivity; weak mixing; mixing; chaos;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the continuous map →: X → X and the continuous map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar f$$ \end{document} of K(X) into itself induced by →, where X is a metric space and K(X) the space of all non-empty compact subsets of X endowed with the Hausdor. metric. According to the questions whether the chaoticity of → implies the chaoticity of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar f$$ \end{document} posed by Román-Flores and when the chaoticity of → implies the chaoticity of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar f$$ \end{document} posed by Fedeli, we investigate the relations between → and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar f$$ \end{document} in the related dynamical properties such as transitivity, weakly mixing and mixing, etc. And by using the obtained results, we give the satisfied answers to Román-Flores's question and Fedeli's question.
引用
收藏
页码:1 / 8
页数:7
相关论文
共 20 条
[1]  
Ashwin P.(1999)Attractors of a randomly forced electronic oscillator Physica D 125 302-310
[2]  
Kaczynski T.(1995)Conley index for discrete multivalued systems Topology and Its Applications 65 83-96
[3]  
Mrozek M.(1992)On the definition of chaos Amer Math Monthly 99 332-334
[4]  
Banks J.(1992)On maps with dense orbits and the definition of chaos Rocky Mountain J. Math. 22 353-375
[5]  
Brooks J.(2002)Devaney's chaos or 2-scattering implies Li-Yorke's chaos Topology and Its Applications 117 259-272
[6]  
Cairns G.(2004)Devaney's chaos implies existence of s-scrambled sets Proc. Amer. Math. Soc. 132 2761-2767
[7]  
Stacey P.(2005)Chaos in topologically transitive systems Science in China, Ser. A 48 929-939
[8]  
Silverman S.(2003)A note on transitivity in set-valued discrete systems Chaos, Solitons and Fractals 17 99-104
[9]  
Huang W.(2005)On chaotic set-valued discrete dynamical systems Chaos, Solitons and Fractals 23 1381-1384
[10]  
Ye X.(1997)Chaos caused by a strong-mixing measure-preserving transformation Science in China, Ser. A 40 253-260