New techniques for jet calibration with the ATLAS detector

被引:0
作者
G. Aad
B. Abbott
K. Abeling
N. J. Abicht
S. H. Abidi
A. Aboulhorma
H. Abramowicz
H. Abreu
Y. Abulaiti
A. C. Abusleme Hoffman
B. S. Acharya
C. Adam Bourdarios
L. Adamczyk
L. Adamek
S. V. Addepalli
M. J. Addison
J. Adelman
A. Adiguzel
T. Adye
A. A. Affolder
Y. Afik
M. N. Agaras
J. Agarwala
A. Aggarwal
C. Agheorghiesei
A. Ahmad
F. Ahmadov
W. S. Ahmed
S. Ahuja
X. Ai
G. Aielli
M. Ait Tamlihat
B. Aitbenchikh
I. Aizenberg
M. Akbiyik
T. P. A. Åkesson
A. V. Akimov
D. Akiyama
N. N. Akolkar
K. Al Khoury
G. L. Alberghi
J. Albert
P. Albicocco
G. L. Albouy
S. Alderweireldt
M. Aleksa
I. N. Aleksandrov
C. Alexa
T. Alexopoulos
A. Alfonsi
机构
[1] University of Adelaide,Department of Physics
[2] University of Alberta,Department of Physics
[3] Ankara University,Department of Physics
[4] TOBB University of Economics and Technology,Division of Physics
[5] Univ. Savoie Mont Blanc,LAPP
[6] CNRS/IN2P3,APC
[7] Université Paris Cité,High Energy Physics Division
[8] CNRS/IN2P3,Department of Physics
[9] Argonne National Laboratory,Department of Physics
[10] University of Arizona,Physics Department
[11] University of Texas at Arlington,Physics Department
[12] National and Kapodistrian University of Athens,Department of Physics
[13] National Technical University of Athens,Institute of Physics
[14] University of Texas at Austin,Institut de Física d’Altes Energies (IFAE)
[15] Azerbaijan Academy of Sciences,Institute of High Energy Physics
[16] Barcelona Institute of Science and Technology,Physics Department
[17] Chinese Academy of Sciences,Department of Physics
[18] Tsinghua University,School of Science
[19] Nanjing University,Institute of Physics
[20] Shenzhen Campus of Sun Yat-sen University,Department for Physics and Technology
[21] University of Chinese Academy of Science (UCAS),Physics Division
[22] University of Belgrade,Institut für Physik
[23] University of Bergen,Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics
[24] Lawrence Berkeley National Laboratory,School of Physics and Astronomy
[25] University of California,Department of Physics
[26] Humboldt Universität zu Berlin,Department of Physics Engineering
[27] University of Bern,Department of Physics
[28] University of Birmingham,Facultad de Ciencias y Centro de Investigaciónes
[29] Bogazici University,Departamento de Física
[30] Gaziantep University,Dipartimento di Fisica e Astronomia A. Righi
[31] Istanbul University,Physikalisches Institut
[32] Istinye University,Department of Physics
[33] Universidad Antonio Nariño,Department of Physics
[34] Universidad Nacional de Colombia,Department of Physics
[35] Pontificia Universidad Javeriana,Physics Department
[36] Università di Bologna,Faculty of Physics
[37] INFN Sezione di Bologna,Faculty of Mathematics, Physics and Informatics
[38] Universität Bonn,Department of Subnuclear Physics
[39] Boston University,Physics Department
[40] Brandeis University,Departamento de Física, y CONICET, Facultad de Ciencias Exactas y Naturales, Instituto de Física de Buenos Aires (IFIBA)
[41] Transilvania University of Brasov,Cavendish Laboratory
[42] Horia Hulubei National Institute of Physics and Nuclear Engineering,Department of Physics
[43] Alexandru Ioan Cuza University of Iasi,Department of Mechanical Engineering Science
[44] National Institute for Research and Development of Isotopic and Molecular Technologies,National Institute of Physics
[45] University Politehnica Bucharest,Department of Physics
[46] West University in Timisoara,School of Physics
[47] University of Bucharest,Department of Physics
[48] Comenius University,Faculté des Sciences Ain Chock
[49] Institute of Experimental Physics of the Slovak Academy of Sciences,Faculté des Sciences
[50] Brookhaven National Laboratory,Faculté des Sciences Semlalia
来源
The European Physical Journal C | / 83卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A determination of the jet energy scale is presented using proton–proton collision data with a centre-of-mass energy of s=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}=13$$\end{document} TeV, corresponding to an integrated luminosity of 140 fb-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} collected using the ATLAS detector at the LHC. Jets are reconstructed using the ATLAS particle-flow method that combines charged-particle tracks and topo-clusters formed from energy deposits in the calorimeter cells. The anti-kt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_\textrm{t}$$\end{document} jet algorithm with radius parameter R=0.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=0.4$$\end{document} is used to define the jet. Novel jet energy scale calibration strategies developed for the LHC Run 2 are reported that lay the foundation for the jet calibration in Run 3. Jets are calibrated with a series of simulation-based corrections, including state-of-the-art techniques in jet calibration such as machine learning methods and novel in situ calibrations to achieve better performance than the baseline calibration derived using up to 81 fb-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} of Run 2 data. The performance of these new techniques is then examined in the in situ measurements by exploiting the transverse momentum balance between a jet and a reference object. The b-quark jet energy scale using particle flow jets is measured for the first time with around 1% precision using γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}+jet events.
引用
收藏
相关论文
共 68 条
[1]  
Cacciari M(2008)The anti- JHEP 04 063-undefined
[2]  
Salam GP(2006) jet clustering algorithm Phys. Lett. B 641 57-undefined
[3]  
Soyez G(2018)Dispelling the JINST 13 T05008-undefined
[4]  
Cacciari M(2015) myth for the Comput. Phys. Commun. 191 159-undefined
[5]  
Salam GP(2013) jet-finder Nucl. Phys. B 867 244-undefined
[6]  
Abbott B(2001)Production and integration of the ATLAS Insertable B-Layer Nucl. Instrum. Meth. A 462 152-undefined
[7]  
Sjostrand T(2019)An introduction to PYTHIA 8.2 SciPost Phys. 7 034-undefined
[8]  
Ball RD(2008)Parton distributions with LHC data JHEP 03 038-undefined
[9]  
Lange DJ(2016)The EvtGen particle decay simulation package Phys. Rev. D 93 381-undefined
[10]  
Bothmann E(2004)Event generation with Sherpa 2.2 Eur. Phys. J. C 36 026-undefined