Density variation effect on multi-ions with kinetic Alfven wave around cusp region—a kinetic approach

被引:0
作者
Radha Tamrakar
P. Varma
M. S. Tiwari
机构
[1] Dr. H. S. Gour University,School of Mathematical and Physical Sciences, Department of Physics
来源
Astrophysics and Space Science | 2018年 / 363卷
关键词
Kinetic Alfven wave; Kinetic theory; Multi-ions plasma; Earth’s magnetosphere; Cusp region; Bi-Maxwellian distribution function;
D O I
暂无
中图分类号
学科分类号
摘要
The kinetic Alfven waves in the presence of homogeneous magnetic field plasma with multi-ions effect are investigated. The dispersion relation and normalised damping rate are derived for low-β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta$\end{document} plasma using kinetic theory. The effect of density variation of H+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\text{H}^{+}$\end{document}, He+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\text{He}^{+}$\end{document} and O+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\text{O}^{+}$\end{document} ions is observed on frequency and damping rate of the wave. The variation of frequency (ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega$\end{document}) and normalised damping rate (γ/ΩH+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma / \varOmega_{H^{ +}} $\end{document}) of the wave are studied with respect to k⊥ρj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k_{ \bot} \rho_{j}$\end{document}, where k⊥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k_{ \bot} $\end{document} is the perpendicular wave number, ρj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho_{j}$\end{document} is the ion gyroradius and j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$j $\end{document} denotes H+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\text{H}^{+}$\end{document}, He+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\text{He}^{+}$\end{document} and O+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\text{O}^{+}$\end{document} ions. The variation with k⊥ρj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k_{ \bot} \rho_{j}$\end{document} is considered over wide range. The parameters appropriate to cusp region are used for the explanation of results. It is found that with hydrogen and helium ions gyration, the frequency of wave is influenced by the density variation of H+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\text{H}^{+}$\end{document} and He+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\text{He}^{+}$\end{document} ions but remains insensitive to the change in density of O+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\text{O}^{+}$\end{document} ions. For oxygen ion gyration, the frequency of wave varies over a short range only for O+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\text{O}^{+}$\end{document} ion density variation. The wave shows damping at lower altitude due to variation in density of lighter H+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\text{H}^{+}$\end{document} and He+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\text{He}^{+}$\end{document} ions whereas at higher altitude only heavy O+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\text{O}^{+}$\end{document} ions contribute in wave damping. The damping of wave may be due to landau damping or energy transfer from wave to particles. The present study signifies that the both lighter and heavier ions dominate differently to change the characteristics of kinetic Alfven wave and density variation is also an important parameter to understand wave phenomena in cusp region.
引用
收藏
相关论文
共 231 条
[1]  
Agarwal P.(2011)Effect of electron and ion temperature ratio on kinetic Alfven wave with homogeneous plasma by kinetic approach Indian J. Pure Appl. Phys. 49 91-140
[2]  
Varma P.(2011)Study of inertial kinetic Alfven waves around cusp region Planet. Space Sci. 59 306-10639
[3]  
Tiwari M.S.(2013)Study of gradient effects on kinetic Alfven wave with inhomogeneous plasma Astrophys. Space Sci. 345 99-995
[4]  
Agarwal P.(2010)Study of electromagnetic ion cyclotron waves with general loss-cone distribution and multi-ions plasma–particle aspect approach Indian J. Pure Appl. Phys. 48 334-undefined
[5]  
Varma P.(1999)Kinetic Alfven wave in the presence of loss cone distribution function in inhomogeneous magnetoplasma-particle aspect approach Planet. Space Sci. 47 1111-undefined
[6]  
Tiwari M.S.(2005)Low frequency plasma waves in the outer polar cusp a review of observations from Prognoz 8, Interball 1, Magion 4 and Cluster Surv. Geophys. 26 177-undefined
[7]  
Agarwal P.(2002)Ion outflow and associated perpendicular heating in the cusp observed by Interball Auroral Probe and Fast Auroral Snapshot J. Geophys. Res. 107 123-undefined
[8]  
Varma P.(2003)Properties of small-scale Alfven waves and accelerated electrons from FAST J. Geophys. Res. 108 2951-undefined
[9]  
Tiwari M.S.(2012)Kinetic Alfven wave instability driven by field-aligned currents in solar coronal loops Astrophys. J. 754 634-undefined
[10]  
Ahirwar G.(2013)Kinetic Alfven wave instability driven by field aligned currents in a low J. Geophys. Res. 118 1-undefined