Direct Numerical Simulation of a Supersonic Base Flow Behind a Circular Cylinder

被引:0
作者
A. M. Lipanov
S. A. Karskanov
A. I. Karpov
机构
[1] Russian Academy of Sciences,Institute of Mechanics, Ural Branch
来源
Journal of Applied Mechanics and Technical Physics | 2018年 / 59卷
关键词
supersonic flow; Navier–Stokes equations; high-order approximation; direct numerical simulation; base drag;
D O I
暂无
中图分类号
学科分类号
摘要
A supersonic flow in the near wake behind a cylinder is considered. Base pressure distributions behind a circular cylinder for various Mach numbers M∞ are obtained and analyzed by means of direct numerical simulation based on high-order approximation algorithms. For M∞ = 2.46, the results obtained in the present study are compared with available experimental and numerical data. Generation of turbulent kinetic energy is calculated for various Mach numbers.
引用
收藏
页码:14 / 21
页数:7
相关论文
共 21 条
[1]  
Sahu J.(1985)Navier–Stokes Computations of Projectile Base Flow with and without Mass Injection AIAA J. 23 1348-1355
[2]  
Nietubicz C. J.(1990)Measurement of In-Flight Base Pressure on an Artillery-Fired Projectile J. Spacecraft Rockets 27 5-6
[3]  
Steger J. L.(2006)Direct Numerical Simulations of Transitional Supersonic Base Flows AIAA J. 44 848-858
[4]  
Rollstin L.(2006)Reynolds-Averaged Navier–Stokes / Large-Eddy Simulations of Supersonic Base Flow AIAA J. 44 2578-2590
[5]  
Sandberg R. D.(2002)Detached-Eddy Simulation with Compressibility Corrections Applied to a Supersonic Axisymmetric Base Flow J. Fluids Eng. 124 911-923
[6]  
Fasel H. F.(1994)Supersonic Base Flow Experiments in the NearWake of a Cylindrical Afterbody AIAA J. 32 77-83
[7]  
Simon F.(2011)Stability Analysis of Axisymmetric Supersonic Wakes Using Various Basic States J. Phys.: Conf. Ser. 318 032017-41
[8]  
Deck S.(2006)Numerical Investigation of Transitional Supersonic Axisymmetric Wakes J. Fluid Mech. 563 1-169
[9]  
Guillen P.(2011)Non-Reflecting Boundary Conditions and Numerical Simulation of Flow Problems Zh. Vychisl. Mat. Mat. Fiz. 51 152-85
[10]  
Sagaut P.(1998)Total Variation Diminishing Runge–Kutta Schemes Math. Comput. 67 73-undefined