Differential Effects of Plant Growth-Promoting Rhizobacteria on Maize Growth and Cadmium Uptake

被引:122
|
作者
Ahmad I. [1 ,2 ]
Akhtar M.J. [2 ]
Asghar H.N. [2 ]
Ghafoor U. [3 ]
Shahid M. [1 ]
机构
[1] Department of Environmental Sciences, COMSATS Institute of Information Technology, Off-Multan Road, Mailsi Road, Vehari, 61100, Punjab
[2] Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad
[3] Directorate of Rapid Soil Fertility Survey and Soil Testing Institute, Lahore
关键词
Heavy metals; PGPR; Phosphate solubilization; Phytoremediation; Plant health; Root colonization;
D O I
10.1007/s00344-015-9534-5
中图分类号
学科分类号
摘要
Maize is a plant known for food, feed, and energy value, but being a greater biomass, it may also be utilized to extract pollutants from soil. Plant growth-promoting rhizobacteria (PGPR) may act as biofertilizer to improve plant health and indirectly may enhance metal extraction. This study focuses on five bacterial strains isolated from the vegetable (Bitter gourd) rhizosphere irrigated with industrial effluent and characterized for various plant growth-promoting activities. Based on 16S rRNA gene sequencing, bacterial strains belonging to the genera, Bacillus (CIK-517, CIK-519), Klebsiella (CIK-518), Leifsonia (CIK-521), and Enterobacter (CIK-521R), were tested for their ability to promote maize growth in axenic conditions. Results showed negative and positive regulation of maize growth by the exogenous application of Cd and PGPR, respectively. Seed germination assays revealed significant reduction in relative seedling growth of maize cultivars upon Cd exposure (0–80 mg Cd L−1). The tested strains showed tolerance to Cd (1.78–4.45 mmol L−1) and were positive for catalase, oxidase, phosphate solubilization, exopolysaccharide (EPS), and auxin production, whereas CIK-518, CIK-519, and CIK-521R were negative for EPS, phosphate solubilization, and oxidase activities, respectively. Bacterial strains significantly increased shoot/root growth and their dry biomass in normal and Cd-contaminated soil as compared to their respective controls. None of the strains showed significant effects on relative water content or membrane permeability; however, Cd uptake significantly increased in plant tissues upon bacterial inoculation. Bacterial strains CIK-518 and CIK-521R are effective colonizers and thus can be potential inoculants to promote maize growth and Cd extraction/stabilization in Cd-contaminated soil. © 2015, Springer Science+Business Media New York.
引用
收藏
页码:303 / 315
页数:12
相关论文
共 50 条
  • [21] Differential Uptake of Cadmium and Chromium in Brassica oleraceae in Response to Application of Plant Growth Promoting Rhizobacteria
    Asad, Saeed Ahmad
    Masood-ur-Rehman
    Ahmad, Rafiq
    Umer, Muhammad
    INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY, 2018, 20 (07) : 1613 - 1622
  • [22] Effects of plant growth-promoting rhizobacteria on organic lettuce production
    Malkoclu, M. C.
    Tuzel, Y.
    Oztekin, G. B.
    Ozaktan, H.
    Yolageldi, L.
    III INTERNATIONAL SYMPOSIUM ON ORGANIC GREENHOUSE HORTICULTURE, 2017, 1164 : 265 - 271
  • [23] Effects of plant growth-promoting rhizobacteria on blueberry growth and rhizosphere soil microenvironment
    Wang, Mengjiao
    Yang, Xinlong
    PEERJ, 2024, 12
  • [24] IRON REGULATION OF PLANT GROWTH-PROMOTING RHIZOBACTERIA
    KLOEPPER, JW
    SCHROTH, MN
    LEONG, J
    PHYTOPATHOLOGY, 1981, 71 (02) : 231 - 232
  • [25] Current Perspectives on Plant Growth-Promoting Rhizobacteria
    Javid A. Parray
    Sumira Jan
    Azra N. Kamili
    Raies A. Qadri
    Dilfuza Egamberdieva
    Parvaiz Ahmad
    Journal of Plant Growth Regulation, 2016, 35 : 877 - 902
  • [26] Plant Growth-Promoting Rhizobacteria in Bean Production
    Jarak, M.
    Jafari, T. H.
    Djuric, S.
    Varga, J. G.
    Cervenski, J.
    Vasic, M.
    Colo, J.
    V BALKAN SYMPOSIUM ON VEGETABLES AND POTATOES, 2012, 960 : 409 - 415
  • [27] Current Perspectives on Plant Growth-Promoting Rhizobacteria
    Parray, Javid A.
    Jan, Sumira
    Kamili, Azra N.
    Qadri, Raies A.
    Egamberdieva, Dilfuza
    Ahmad, Parvaiz
    JOURNAL OF PLANT GROWTH REGULATION, 2016, 35 (03) : 877 - 902
  • [28] PLANT GROWTH-PROMOTING RHIZOBACTERIA ON CANOLA (RAPESEED)
    KLOEPPER, JW
    HUME, DJ
    SCHER, FM
    SINGLETON, C
    TIPPING, B
    LALIBERTE, M
    FRAULEY, K
    KUTCHAW, T
    SIMONSON, C
    LIFSHITZ, R
    ZALESKA, I
    LEE, L
    PLANT DISEASE, 1988, 72 (01) : 42 - 46
  • [29] Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth
    Grobelak, A.
    Napora, A.
    Kacprzak, M.
    ECOLOGICAL ENGINEERING, 2015, 84 : 22 - 28
  • [30] Effect of Chemical Fertilization on the Impacts of Plant Growth-Promoting Rhizobacteria in Maize Crops
    Fernanda Cristina Nascimento
    Saveetha Kandasamy
    George Lazarovits
    Everlon Cid Rigobelo
    Current Microbiology, 2020, 77 : 3878 - 3887