Influence of Al Variation on the Mechanical Properties and Critical Shear Stress of Twinning in Fe-Mn-Al-C Steels

被引:0
作者
T. Riaz
S. R. Das
P. Sahu
机构
[1] Jadavpur University,Department of Physics
来源
Journal of Materials Engineering and Performance | 2023年 / 32卷
关键词
dislocations; electron microscopy; high-Mn steels; metals and alloys; microstructure; stacking fault energy;
D O I
暂无
中图分类号
学科分类号
摘要
The deformation behavior of three tensile deformed high-Mn steels with varying Al contents (0, 1 and 3 wt.%) is discriminated on the basis of their respective critical shear stress of twinning, derived from their respective stacking fault energies (18.1-41.6 mJ/m2) estimated according to x-ray diffraction line profile analyses. The Al-free steel manifested maximum strain hardening rate ~ 3 GPa that gradually dropped with addition of Al. The critical twinning stress, τc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{c}$$\end{document}, of the steels was estimated as: 246, 348 and 561 MPa. Increasing stacking fault energies lead to an adaptation in deformation mechanism from: (γ→ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\gamma \to \varepsilon )$$\end{document} transformation →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\to$$\end{document} deformation twinning →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\to$$\end{document} dislocation plasticity—as was noted from x-ray diffraction and transmission electron microscopy studies. The highest strain hardening observed in Al-free steel was attributed to the presence of ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document}-martensite in the austenite microstructure. The incidences of ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document}-martensite and/or twinning were found to be directly related to the equilibrium width of the overlapping stacking faults. The critical shear stress-based calculations could better explain the adaptation of plasticity mechanisms in Fe-Mn-Al-C steels than the prediction based on the stacking fault energy alone.
引用
收藏
页码:1636 / 1644
页数:8
相关论文
共 155 条
[1]  
Bouaziz O(2011)High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships Curr. Opin. Solid State Mater. Sci. 15 141-168
[2]  
Allain S(2018)Twinning-Induced Plasticity (TWIP) Steels Acta Mater. 142 283-362
[3]  
Scott CP(2000)High Strength Fe-Mn-(Al, Si) TRIP/TWIP Steels Development Properties-Application Int. J. Plast. 16 1391-1409
[4]  
Cugy P(2010)Dependence of Tensile Deformation Behavior of TWIP Steels on Stacking Fault Energy, Temperature and Strain Rate Acta Mater. 58 5129-5141
[5]  
Barbier D(2010)On the Relationship between the Twin Internal Structure and the Work-Hardening Rate of TWIP Steels Scr. Mater. 63 961-964
[6]  
De Cooman BC(2008)Microband-Induced Plasticity in a High Mn-Al-C Light Steel Mater. Sci. Eng. A 496 417-424
[7]  
Estrin Y(2016)Strain Hardening by Dynamic Slip Band Refinement in a High-Mn Lightweight Steel Acta Mater. 116 188-199
[8]  
Kim SK(2021)Dislocation Substructures in Tensile Deformed Fe-Mn-Al-C Steel Mater. Lett. 282 128691-3090
[9]  
Grӓssel O(2009)Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels Metall. Mater. Trans. A. 40A 3076-187
[10]  
Krüger L(2008)Influence of Addition Elements on the Stacking-Fault Energy and Mechanical Properties of an Austenitic Fe–Mn–C Steel Mater. Sci. Eng. A. 483–484 184-187