Machine-learning-derived sepsis bundle of care

被引:0
作者
Alexandre Kalimouttou
Ivan Lerner
Chérifa Cheurfa
Anne-Sophie Jannot
Romain Pirracchio
机构
[1] Université Paris Cité and Université Sorbonne Paris Nord,Inserm UMR 1153, Center of Research in Epidemiology and StatisticS (CRESS), ECSTRRA Team
[2] Assistance Publique Hôpitaux de Paris-Centre (AP-HP),Department of Medical Informatics
[3] Georges Pompidou European Hospital,Inserm, Centre de Recherche des Cordeliers
[4] Sorbonne Université,Intensive Care Department, Assistance Publique Hôpitaux de Paris
[5] Université Paris Cité,Centre (AP
[6] HeKA,HP), Cochin Hospital
[7] Inria Paris,Department of Anesthesia and Perioperative Medicine
[8] Université Paris Cité,undefined
[9] Zuckerberg San Francisco General Hospital and Trauma Center,undefined
[10] University of California San Francisco,undefined
来源
Intensive Care Medicine | 2023年 / 49卷
关键词
Sepsis; Septic shock; Machine learning; Guidelines; Compliance;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:26 / 36
页数:10
相关论文
共 50 条
[41]   Early prediction of sepsis in intensive care patients using the machine learning algorithm NAVOY® Sepsis, a prospective randomized clinical validation study [J].
Persson, Inger ;
Macura, Andreas ;
Becedas, David ;
Sjovall, Fredrik .
JOURNAL OF CRITICAL CARE, 2024, 80
[42]   Early Prediction of Mortality, Severity, and Length of Stay in the Intensive Care Unit of Sepsis Patients Based on Sepsis 3.0 by Machine Learning Models [J].
Su, Longxiang ;
Xu, Zheng ;
Chang, Fengxiang ;
Ma, Yingying ;
Liu, Shengjun ;
Jiang, Huizhen ;
Wang, Hao ;
Li, Dongkai ;
Chen, Huan ;
Zhou, Xiang ;
Hong, Na ;
Zhu, Weiguo ;
Long, Yun .
FRONTIERS IN MEDICINE, 2021, 8
[43]   Machine Learning Line Bundle Cohomology [J].
Brodie, Callum R. ;
Constantin, Andrei ;
Deen, Rehan ;
Lukas, Andre .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2020, 68 (01)
[44]   Prediction of sepsis patients using machine learning approach: A meta-analysis [J].
Islam, Md. Mohaimenul ;
Nasrin, Tahmina ;
Walther, Bruno Andreas ;
Wu, Chieh-Chen ;
Yang, Hsuan-Chia ;
Li , Yu-Chuan .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2019, 170 :1-9
[45]   Using Machine Learning Methods to Predict the Lactate Trend of Sepsis Patients in the ICU [J].
Arslantas, Mustafa Kemal ;
Asuroglu, Tunc ;
Arslantas, Reyhan ;
Pashazade, Emin ;
Dincer, Pelin Corman ;
Altun, Gulbin Tore ;
Kararmaz, Alper .
DIGITAL HEALTH AND WIRELESS SOLUTIONS, PT II, NCDHWS 2024, 2024, 2084 :3-16
[46]   Machine learning line bundle connections [J].
Ashmore, Anthony ;
Deen, Rehan ;
He, Yang-Hui ;
Ovrut, Burt A. .
PHYSICS LETTERS B, 2022, 827
[47]   A Time-Phased Machine Learning Model for Real-Time Prediction of Sepsis in Critical Care [J].
Li, Xiang ;
Xu, Xiao ;
Xie, Fei ;
Xu, Xian ;
Sun, Yuyao ;
Liu, Xiaoshuang ;
Jia, Xiaoyu ;
Kang, Yanni ;
Xie, Lixin ;
Wang, Fei ;
Xie, Guotong .
CRITICAL CARE MEDICINE, 2020, 48 (10) :E884-E888
[48]   The impact of machine-learning-derived lean psoas muscle area on prognosis of type B aortic dissection patients undergoing endovascular treatment [J].
Liu, Jitao ;
Su, Sheng ;
Liu, Weijie ;
Xie, Enmin ;
Hu, Xiaolu ;
Lin, Wenhui ;
Ding, Huanyu ;
Luo, Songyuan ;
Liu, Yuan ;
Huang, Wenhui ;
Li, Jie ;
Yang, Fan ;
Luo, Jianfang .
EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 2022, 62 (06)
[49]   Sepsis scoring systems and use of the Sepsis six care bundle in maternity hospitals [J].
Nouf Abutheraa ;
June Grant ;
Alexander B. Mullen .
BMC Pregnancy and Childbirth, 21
[50]   Application of Machine Learning for Clinical Subphenotype Identification in Sepsis [J].
Hu, Chang ;
Li, Yiming ;
Wang, Fengyun ;
Peng, Zhiyong .
INFECTIOUS DISEASES AND THERAPY, 2022, 11 (05) :1949-1964