Machine-learning-derived sepsis bundle of care

被引:0
作者
Alexandre Kalimouttou
Ivan Lerner
Chérifa Cheurfa
Anne-Sophie Jannot
Romain Pirracchio
机构
[1] Université Paris Cité and Université Sorbonne Paris Nord,Inserm UMR 1153, Center of Research in Epidemiology and StatisticS (CRESS), ECSTRRA Team
[2] Assistance Publique Hôpitaux de Paris-Centre (AP-HP),Department of Medical Informatics
[3] Georges Pompidou European Hospital,Inserm, Centre de Recherche des Cordeliers
[4] Sorbonne Université,Intensive Care Department, Assistance Publique Hôpitaux de Paris
[5] Université Paris Cité,Centre (AP
[6] HeKA,HP), Cochin Hospital
[7] Inria Paris,Department of Anesthesia and Perioperative Medicine
[8] Université Paris Cité,undefined
[9] Zuckerberg San Francisco General Hospital and Trauma Center,undefined
[10] University of California San Francisco,undefined
来源
Intensive Care Medicine | 2023年 / 49卷
关键词
Sepsis; Septic shock; Machine learning; Guidelines; Compliance;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:26 / 36
页数:10
相关论文
共 50 条
[31]   Provider-to-provider telemedicine improves adherence to sepsis bundle care in community emergency departments [J].
Mohr, Nicholas M. ;
Campbell, Kalyn D. ;
Swanson, Morgan B. ;
Ullrich, Fred ;
Merchant, Kimberly A. S. ;
Ward, Marcia M. .
JOURNAL OF TELEMEDICINE AND TELECARE, 2021, 27 (08) :518-526
[32]   Machine Learning Predictive Model for Septic Shock in Acute Pancreatitis with Sepsis [J].
Xia, Yiqin ;
Long, Hongyu ;
Lai, Qiang ;
Zhou, Yiwu .
JOURNAL OF INFLAMMATION RESEARCH, 2024, 17 :1443-1452
[33]   Clinical validation and optimization of machine learning models for early prediction of sepsis [J].
Liu, Xi ;
Li, Meiyi ;
Liu, Xu ;
Luo, Yuting ;
Yang, Dong ;
Hui, Ouyang ;
He, Jiaoling ;
Xia, Jinyu ;
Xiao, Fei .
FRONTIERS IN MEDICINE, 2025, 12
[34]   Early Detection of Sepsis With Machine Learning Techniques: A Brief Clinical Perspective [J].
Giacobbe, Daniele Roberto ;
Signori, Alessio ;
Del Puente, Filippo ;
Mora, Sara ;
Carmisciano, Luca ;
Briano, Federica ;
Vena, Antonio ;
Ball, Lorenzo ;
Robba, Chiara ;
Pelosi, Paolo ;
Giacomini, Mauro ;
Bassetti, Matteo .
FRONTIERS IN MEDICINE, 2021, 8
[35]   Sepsis mortality prediction with Machine Learning Tecniques [J].
Perez-Tome, Javier Carrillo ;
Parron-Carreno, Tesifon ;
Castano-Fernandez, Ana Belen ;
Nievas-Soriano, Bruno Jose ;
Castro-Luna, Gracia .
MEDICINA INTENSIVA, 2024, 48 (10) :584-593
[36]   Machine-learning-derived rules set excludes risk of Parkinson’s disease in patients with olfactory or gustatory symptoms with high accuracy [J].
Jörn Lötsch ;
Antje Haehner ;
Thomas Hummel .
Journal of Neurology, 2020, 267 :469-478
[37]   Heart rate variability based machine learning models for risk prediction of suspected sepsis patients in the emergency department [J].
Chiew, Calvin J. ;
Liu, Nan ;
Tagami, Takashi ;
Wong, Ting Hway ;
Koh, Zhi Xiong ;
Ong, Marcus E. H. .
MEDICINE, 2019, 98 (06)
[38]   A Machine Learning Understanding of Sepsis [J].
Shetty, Manish ;
Alex, Soumya Mary ;
Moni, Merlin ;
Edathadathil, Fabia ;
Prasanna, Preetha ;
Menon, Veena ;
Menon, Vidya P. ;
Athri, Prashanth ;
Srinivasa, Gowri .
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, :2175-2179
[39]   Early prediction of sepsis in intensive care patients using the machine learning algorithm NAVOY® Sepsis, a prospective randomized clinical validation study [J].
Persson, Inger ;
Macura, Andreas ;
Becedas, David ;
Sjovall, Fredrik .
JOURNAL OF CRITICAL CARE, 2024, 80
[40]   Early Prediction of Mortality, Severity, and Length of Stay in the Intensive Care Unit of Sepsis Patients Based on Sepsis 3.0 by Machine Learning Models [J].
Su, Longxiang ;
Xu, Zheng ;
Chang, Fengxiang ;
Ma, Yingying ;
Liu, Shengjun ;
Jiang, Huizhen ;
Wang, Hao ;
Li, Dongkai ;
Chen, Huan ;
Zhou, Xiang ;
Hong, Na ;
Zhu, Weiguo ;
Long, Yun .
FRONTIERS IN MEDICINE, 2021, 8