Machine-learning-derived sepsis bundle of care

被引:0
作者
Alexandre Kalimouttou
Ivan Lerner
Chérifa Cheurfa
Anne-Sophie Jannot
Romain Pirracchio
机构
[1] Université Paris Cité and Université Sorbonne Paris Nord,Inserm UMR 1153, Center of Research in Epidemiology and StatisticS (CRESS), ECSTRRA Team
[2] Assistance Publique Hôpitaux de Paris-Centre (AP-HP),Department of Medical Informatics
[3] Georges Pompidou European Hospital,Inserm, Centre de Recherche des Cordeliers
[4] Sorbonne Université,Intensive Care Department, Assistance Publique Hôpitaux de Paris
[5] Université Paris Cité,Centre (AP
[6] HeKA,HP), Cochin Hospital
[7] Inria Paris,Department of Anesthesia and Perioperative Medicine
[8] Université Paris Cité,undefined
[9] Zuckerberg San Francisco General Hospital and Trauma Center,undefined
[10] University of California San Francisco,undefined
来源
Intensive Care Medicine | 2023年 / 49卷
关键词
Sepsis; Septic shock; Machine learning; Guidelines; Compliance;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:26 / 36
页数:10
相关论文
共 50 条
[21]   Machine learning in critical care: state-of-the-art and a sepsis case study [J].
Alfredo Vellido ;
Vicent Ribas ;
Carles Morales ;
Adolfo Ruiz Sanmartín ;
Juan Carlos Ruiz Rodríguez .
BioMedical Engineering OnLine, 17
[22]   Machine Learning and Sepsis: On the Road to Revolution [J].
Liu, Vincent X. ;
Walkey, Allan J. .
CRITICAL CARE MEDICINE, 2017, 45 (11) :1946-1947
[23]   Enhancing sepsis management through machine learning techniques: A review [J].
Ocampo-Quintero, N. ;
Vidal-Cortes, P. ;
del Rio Carbajo, L. ;
Fdez-Riverola, F. ;
Reboiro-Jato, M. ;
Glez-Pena, D. .
MEDICINA INTENSIVA, 2022, 46 (03) :140-156
[24]   Machine-learning models for prediction of sepsis patients mortality [J].
Bao, C. ;
Deng, F. ;
Zhao, S. .
MEDICINA INTENSIVA, 2023, 47 (06) :315-325
[25]   Machine learning for predicting acute myocardial infarction in patients with sepsis [J].
Fang, Shusheng ;
Jin, Hongjin ;
Zhang, Jiayu ;
Wang, Yali ;
Nan, Wenyu ;
Feng, Yanhao ;
Su, Wen ;
Jiang, Xiaodong .
SCIENTIFIC REPORTS, 2024, 14 (01)
[26]   On classifying sepsis heterogeneity in the ICU: insight using machine learning [J].
Ibrahim, Zina M. ;
Wu, Honghan ;
Hamoud, Ahmed ;
Stappen, Lukas ;
Dobson, Richard J. B. ;
Agarossi, Andrea .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2020, 27 (03) :437-443
[27]   Early Detection of Sepsis Induced Deterioration Using Machine Learning [J].
Dal Canton, Francesco ;
Quinten, Vincent M. ;
Wiering, Marco A. .
ARTIFICIAL INTELLIGENCE, BNAIC 2018, 2019, 1021 :1-15
[28]   Identifying the Risk of Sepsis in Patients With Cancer Using Digital Health Care Records: Machine Learning-Based Approach [J].
Yang, Donghun ;
Kim, Jimin ;
Yoo, Junsang ;
Cha, Won Chul ;
Paik, Hyojung .
JMIR MEDICAL INFORMATICS, 2022, 10 (06)
[29]   A machine-learning-derived online prediction model for depression risk in COPD patients: A retrospective cohort study from CHARLS [J].
Zhao, Xuanna ;
Wang, Yunan ;
Li, Jiahua ;
Liu, Weiliang ;
Yang, Yuting ;
Qiao, Youping ;
Liao, Jinyu ;
Chen, Min ;
Li, Dongming ;
Wu, Bin ;
Huang, Dan ;
Wu, Dong .
JOURNAL OF AFFECTIVE DISORDERS, 2025, 377 :284-293
[30]   The compliance of sepsis resuscitation care bundle in patients diagnosed with septic shock or sepsis to the International Surviving Sepsis Campaign among patients admitted to a tertiary and teaching hospital, Ethiopia: A 1-year prospective observational study [J].
Eyayu, Ruth Ayanaw ;
Ashagrie, Henos Enyew ;
Zeleke, Tadael Gudayu ;
Chekol, Wubie Birlie ;
Melesse, Debas Yaregal .
PERIOPERATIVE CARE AND OPERATING ROOM MANAGEMENT, 2024, 37