Machine-learning-derived sepsis bundle of care

被引:0
作者
Alexandre Kalimouttou
Ivan Lerner
Chérifa Cheurfa
Anne-Sophie Jannot
Romain Pirracchio
机构
[1] Université Paris Cité and Université Sorbonne Paris Nord,Inserm UMR 1153, Center of Research in Epidemiology and StatisticS (CRESS), ECSTRRA Team
[2] Assistance Publique Hôpitaux de Paris-Centre (AP-HP),Department of Medical Informatics
[3] Georges Pompidou European Hospital,Inserm, Centre de Recherche des Cordeliers
[4] Sorbonne Université,Intensive Care Department, Assistance Publique Hôpitaux de Paris
[5] Université Paris Cité,Centre (AP
[6] HeKA,HP), Cochin Hospital
[7] Inria Paris,Department of Anesthesia and Perioperative Medicine
[8] Université Paris Cité,undefined
[9] Zuckerberg San Francisco General Hospital and Trauma Center,undefined
[10] University of California San Francisco,undefined
来源
Intensive Care Medicine | 2023年 / 49卷
关键词
Sepsis; Septic shock; Machine learning; Guidelines; Compliance;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:26 / 36
页数:10
相关论文
共 50 条
  • [1] Machine-learning-derived sepsis bundle of care
    Kalimouttou, Alexandre
    Lerner, Ivan
    Cheurfa, Cherifa
    Jannot, Anne-Sophie
    Pirracchio, Romain
    INTENSIVE CARE MEDICINE, 2023, 49 (01) : 26 - 36
  • [2] A study of machine-learning-derived formulas using artificially generated dataset
    Lee, Donggeon
    Kim, Sooran
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2024, 85 (02) : 169 - 174
  • [3] Machine-Learning-Derived Model for the Stratification of Cardiovascular risk in Patients with Ischemic Stroke
    Ntaios, George
    Sagris, Dimitrios
    Kallipolitis, Athanasios
    Karagkiozi, Efstathia
    Korompoki, Eleni
    Manios, Efstathios
    Plagianakos, Vasileios
    Vemmos, Konstantinos
    Maglogiannis, Ilias
    JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2021, 30 (10)
  • [4] Machine-learning-derived radiomics signature of pericoronary tissue in coronary CT angiography associates with functional ischemia
    Feng, Yan
    Xu, Zhihan
    Zhang, Lin
    Zhang, Yaping
    Xu, Hao
    Zhuang, Xiaozhong
    Zhang, Hao
    Xie, Xueqian
    FRONTIERS IN PHYSIOLOGY, 2022, 13
  • [5] A Machine Learning Sepsis Prediction Algorithm for Intended Intensive Care Unit Use (NAVOY Sepsis): Proof-of-Concept Study
    Persson, Inger
    Ostling, Andreas
    Arlbrandt, Martin
    Soderberg, Joakim
    Becedas, David
    JMIR FORMATIVE RESEARCH, 2021, 5 (09)
  • [6] Investigating Retention of the Sepsis Care Bundle
    Serrano-Smith, Migdalia
    Brodnik, Joyce
    Emch, Jack F., Jr.
    CLINICAL SIMULATION IN NURSING, 2016, 12 (03) : 74 - 78
  • [7] Deducing neutron star equation of state from telescope spectra with machine-learning-derived likelihoods
    Farrell, Delaney
    Baldi, Pierre
    Ott, Jordan
    Ghosh, Aishik
    Steiner, Andrew W.
    Kavitkar, Atharva
    Lindblom, Lee
    Whiteson, Daniel
    Weber, Fridolin
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (12):
  • [8] Machine Learning for Critical Care: An Overview and a Sepsis Case Study
    Vellido, Alfredo
    Ribas, Vicent
    Morales, Cartes
    Ruiz Sanmartin, Adolfo
    Carlos Ruiz-Rodriguez, Juan
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING, IWBBIO 2017, PT I, 2017, 10208 : 15 - 30
  • [9] Early Prediction of Sepsis in the ICU Using Machine Learning: A Systematic Review
    Moor, Michael
    Rieck, Bastian
    Horn, Max
    Jutzeler, Catherine R.
    Borgwardt, Karsten
    FRONTIERS IN MEDICINE, 2021, 8
  • [10] Analysis of machine learning and deep learning prediction models for sepsis and neonatal sepsis: A systematic review
    Parvin, A. Safiya
    Saleena, B.
    ICT EXPRESS, 2023, 9 (06): : 1215 - 1225