Multilayer Shallow Model for Dry Granular Flows with a Weakly Non-hydrostatic Pressure

被引:0
作者
C. Escalante
E. D. Fernández-Nieto
J. Garres-Díaz
A. Mangeney
机构
[1] U. Málaga,Dpto. Matemática Aplicada
[2] ETS Arquitectura - U. Sevilla,Dpto. Matemática Aplicada I
[3] Edificio Einstein - U. Córdoba Campus de Rabanales,Dpto. Matemáticas
[4] U. Paris-Diderot,Institut de Physique du Globe de Paris, Seismology Team
[5] Sorbonne Paris Cité,undefined
[6] ANGE Team,undefined
[7] CEREMA,undefined
[8] INRIA,undefined
[9] Lab. J. Louis Lions,undefined
[10] Institut Universitaire de France (IUF),undefined
来源
Journal of Scientific Computing | 2023年 / 96卷
关键词
Multilayer models; Non-hydrostatic pressure; Finite volume; Granular flows; 35L60; 76M12; 76T25; 35L65;
D O I
暂无
中图分类号
学科分类号
摘要
The multilayer model proposed in this paper is a generalization of the multilayer non-hydrostatic model for shallow granular flows (Fernández-Nieto et al in Commun Math Sci 16(5):1169–1202, 2018. https://doi.org/10.4310/cms.2018.v16.n5.a1), the multilayer model with μ(I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (I)$$\end{document} rheology (Fernández-Nieto et al in J Fluid Mech 798:643–681, 2016. https://doi.org/10.1017/jfm.2016.333), and the monolayer model with weakly non-hydrostatic pressure for dry granular flows (Garres-Díaz et al in J Sci Comput, 2021. https://doi.org/10.1007/s10915-020-01377-9). We show that the proposed model verifies a dissipative energy balance. A well-balanced numerical scheme is proposed to solve the equations based on a projection method and a hydrostatic reconstruction for the Coulomb friction terms. In order to reduce the computational cost associated with solving the linear system of the projection method, a precomputing of the initial guess for an iterative solver is proposed. This strategy allows us to reduce the computational time by around 70%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} when 20 layers are considered. In the numerical tests, we show that the proposed model can recover the in-depth velocity profiles typically observed in lab experiments and capture the flow/no-flow interface that appears in granular avalanches. During the initial stage of granular collapse simulations, the model is shown to improve the approximation of the mass profiles compared to other models and to predict the parabolic shape of the front velocity evolution with time, as observed in lab experiments. Interestingly, our numerical tests show that the ability of the granular flow to overcome obstacles strongly depends on the model used, which is of strong interest for landslide hazard assessment.
引用
收藏
相关论文
共 237 条
[1]  
Audusse E(2008)Numerical simulations of 3D free surface flows by a multilayer Saint-Venant model Int. J. Numer. Meth. Fluids 56 331-350
[2]  
Bristeau MO(2020)A two-dimensional method for a family of dispersive shallow water models SMAI J. Comput. Math. 6 187-226
[3]  
Decoene A(2017)Partial regularisation of the incompressible J. Fluid Mech. 828 5-32
[4]  
Aïssiouene N(2020)(I)-rheology for granular flow J. Fluid Mech. 779 794-818
[5]  
Bristeau MO(2015)Coupling rheology and segregation in granular flows J. Fluid Mech. 473 20160846-658
[6]  
Godlewski E(2017)Well-posed and ill-posed behaviour of the Proc. R. Soc. A: Math. Phys. Eng. Sci. 106 627-221
[7]  
Mangeney A(2022)(I)-rheology for granular flow Appl. Math. Model. 429 166-2126
[8]  
Parés Madroñal C(2021)Well-posed continuum equations for granular flow with compressibility and J. Comput. Phys. 801 2101-1246
[9]  
Sainte-Marie J(2016)(I)-rheology J. Fluid Mech. 14 1221-1222
[10]  
Barker T(2016)A bed pressure correction of the friction term for depth-averaged granular flow models Commun. Math. Sci. 15 1189-931