Eisenstein series and an asymptotic for the K-Bessel function

被引:0
|
作者
Jimmy Tseng
机构
[1] University of Exeter,Department of Mathematics
来源
The Ramanujan Journal | 2021年 / 56卷
关键词
Bessel functions; Asymptotic expansions; Uniform asymptotic expansions; Eisenstein series; Bounds; 41A60; 33C10; 11M36;
D O I
暂无
中图分类号
学科分类号
摘要
We produce an estimate for the K-Bessel function Kr+it(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{r + i t}(y)$$\end{document} with positive, real argument y and of large complex order r+it\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r+it$$\end{document} where r is bounded and t=ysinθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t = y \sin \theta $$\end{document} for a fixed parameter 0≤θ≤π/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \theta \le \pi /2$$\end{document} or t=ycoshμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t= y \cosh \mu $$\end{document} for a fixed parameter μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu >0$$\end{document}. In particular, we compute the dominant term of the asymptotic expansion of Kr+it(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{r + i t}(y)$$\end{document} as y→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y \rightarrow \infty $$\end{document}. When t and y are close (or equal), we also give a uniform estimate. As an application of these estimates, we give bounds on the weight-zero (real-analytic) Eisenstein series E0(j)(z,r+it)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_0^{(j)}(z, r+it)$$\end{document} for each inequivalent cusp κj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa _j$$\end{document} when 1/2≤r≤3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/2 \le r \le 3/2$$\end{document}.
引用
收藏
页码:323 / 345
页数:22
相关论文
共 50 条
  • [1] Eisenstein series and an asymptotic for the K-Bessel function
    Tseng, Jimmy
    RAMANUJAN JOURNAL, 2021, 56 (01): : 323 - 345
  • [2] INTEGRAL REPRESENTATIONS OF THE k-BESSEL'S FUNCTION
    Gehlot, Kuldeep Singh
    Purohit, Sunil Dutt
    HONAM MATHEMATICAL JOURNAL, 2016, 38 (01): : 17 - 23
  • [3] Recurrence Relations of K-Bessel's Function
    Gehlot, Kuldeep Singh
    THAI JOURNAL OF MATHEMATICS, 2016, 14 (03): : 677 - 685
  • [4] A series associated to Rankin-Selberg L-function and modified K-Bessel function
    Maji, Bibekananda
    Naskar, Pritam
    Sathyanarayana, Sumukha
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2025, 21 (03) : 695 - 714
  • [5] Certain Integral Transforms of Generalized k-Bessel Function
    Kottakkaran Sooppy Nisar
    Waseem Ahmad Khan
    Mohd Ghayasuddin
    AnalysisinTheoryandApplications, 2018, 34 (02) : 165 - 174
  • [6] ADDITION THEOREM AND CERTAIN PROPERTIES OF k-BESSEL FUNCTION
    Gehlot, K. S.
    Purohit, S. D.
    Sharma, J. B.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (01): : 95 - 101
  • [7] Integral transforms involving a generalized k-Bessel function
    Khammash, Ghazi S.
    Salim, Tariq O.
    Aydi, Hassen
    Khattab, Noor N.
    Park, Choonkil
    DEMONSTRATIO MATHEMATICA, 2023, 56 (01)
  • [8] Series expansions of the generalized K-Bessel functions on symmetric cones
    Ding, Hongming
    He, Wei
    ANALYSIS AND APPLICATIONS, 2008, 6 (01) : 1 - 10
  • [9] Bounds and algorithms for the K-Bessel function of imaginary order
    Booker, Andrew R.
    Strombergsson, Andreas
    Then, Holger
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2013, 16 : 78 - 108
  • [10] Generalized Fractional Integral Formulas for the k-Bessel Function
    Suthar, D. L.
    Ayene, Mengesha
    JOURNAL OF MATHEMATICS, 2018, 2018