Social enterprise tree network games

被引:0
作者
Darko Skorin-Kapov
机构
[1] Adelphi University,Robert B. Willumstad School of Business
来源
Annals of Operations Research | 2018年 / 268卷
关键词
Social networks; Cost allocation; Cooperative games; Mathematical programming;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the cost allocation strategy associated with the problem of providing service among network users residing at nodes of a social network. We assume that the social network platform is established in a symmetric complete network. There is a cost associated with each link and the service between any pair of nodes can be delivered via a directed path. The example of a cost efficient solution for such network is a (non-rooted) minimum cost directed spanning tree. The network cost should be distributed among users who might have conflicting interests. The objective of this paper is to formulate the above cost allocation problem as a cooperative game, to be referred to as a Social Enterprise Tree Network (SETN) game, and develop a “fair” and efficient cost allocation scheme. The SETN game is related to the minimum cost spanning tree game. The profound difference is that in the minimum cost spanning tree game the service is delivered from some common source node to the rest of the network, while under the social network platform there is no source and the service is established through the interaction among all participating nodes. The input to our cost allocation problem is the optimal non-rooted directed spanning tree SETN. We formulate several associated SETN games in characteristic function form. Then we construct a couple of efficient cost allocation algorithms that find some points in the core of those SETN games and thus result in subsidy-free cost allocations.
引用
收藏
页码:5 / 20
页数:15
相关论文
共 37 条
  • [1] Bergantinos G(2015)Characterization of monotonic rules in minimum cost spanning trees International Journal of Game Theory 44 1-34
  • [2] Vidal-Puga J(1976)On cost allocation for a spanning tree: a game theoretic approach Networks 6 335-350
  • [3] Bird S(2004)Cost monotonicity, consistency and minimum cost spanning tree games Games and Economic Behavior 48 223-248
  • [4] Dutta B(1997)On the complexity of testing membership in the core of min-cost spanning tree games International Journal of Game Theory 26 361-366
  • [5] Kar A(1986)A generalized linear production model: A unifying model Mathematical Programming 34 212-223
  • [6] Faigle U(1992)On some network flow games Mathematics of Operations Research 17 792-841
  • [7] Kern W(1981)Minimum cost spanning tree games Mathematical Programming 21 1-18
  • [8] Fekete SP(1984)On the core and nucleolus of the M.C.S.T. games Mathematical Programming 29 323-347
  • [9] Hochstattler W(2009)A characterization of Kruskal sharing rules for minimum cost spanning tree problems International Journal of Game Theory 38 107-126
  • [10] Granot D(1978)Computational complexity and the game theory approach to cost allocation for a tree Mathematics of Operations Research 3 189-196