Experimental forest soil warming: response of autotrophic and heterotrophic soil respiration to a short-term 10°C temperature rise

被引:0
|
作者
Andreas Schindlbacher
Sophie Zechmeister-Boltenstern
Barbara Kitzler
Robert Jandl
机构
[1] University of Natural Resources and Applied Life Sciences,Institute of Forest Ecology, Department of Forest and Soil Science
[2] BOKU,Institute of Forest Ecology
[3] Federal Office and Research Centre for Forests – BFW,undefined
来源
Plant and Soil | 2008年 / 303卷
关键词
Autotrophic respiration; Heterotrophic respiration; Soil respiration; Soil warming;
D O I
暂无
中图分类号
学科分类号
摘要
We warmed the top soil of a mature coniferous forest stand by means of heating cables on control and trenched plots within 24 h by 10°C at 1 cm soil depth (9°C at 5 cm depth) and measured the effect on the autotrophic (RA) and heterotrophic (RH) component of total soil CO2 efflux (RS). The short time frame of warming enabled us to exclude confounding fluctuations in soil moisture and carbon (C) flow from the canopy. The results of the field study were backed up by a lab soil incubation experiment. During the first 12 h of warming, RA strongly responded to soil warming; The Q10 values were 5.61 and 6.29 for 1 and 5 cm soil depth temperature. The Q10 values for RA were almost twice as high as the Q10 values of RH (3.04 and 3.53). Q10 values above 5 are above reasonable plant physiological values for root respiration. We see interactions of roots, mycorrhizae and heterotrophic microbes, combined with fast substrate supply to the rhizosphere as an explanation for the high short-term temperature response of RA. When calculated over the whole duration (24 h) of the field soil-warming experiment, temperature sensitivities of RA and RH were similar (no significant difference at P < 0.05); Q10 values were 3.16 and 3.96 for RA and 2.94 and 3.35 for RH calculated with soil temperatures at 1 and 5 cm soil depth, respectively. Laboratory incubation showed that different soil moisture contents of trenched and control plots affected rates of RH, but did not affect the temperature sensitivity of RH. We conclude that a single parameter is sufficient to describe the temperature sensitivity of RS in soil C models which operate on larger temporal and spatial scales. The strong short-term response of RA may be of relevance in soils suspected to experience increasingly strong diurnal temperature variations.
引用
收藏
页码:323 / 330
页数:7
相关论文
共 50 条
  • [1] Experimental forest soil warming:: response of autotrophic and heterotrophic soil respiration to a short-term 10°C temperature rise
    Schindlbacher, Andreas
    Zechmeister-Boltenstern, Sophie
    Kitzler, Barbara
    Jandl, Robert
    PLANT AND SOIL, 2008, 303 (1-2) : 323 - 330
  • [2] Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration
    Wang, Xin
    Liu, Lingli
    Piao, Shilong
    Janssens, Ivan A.
    Tang, Jianwu
    Liu, Weixing
    Chi, Yonggang
    Wang, Jing
    Xu, Shan
    GLOBAL CHANGE BIOLOGY, 2014, 20 (10) : 3229 - 3237
  • [3] Short-term temperature impact on soil heterotrophic respiration in limed agricultural soil samples
    Pauline Buysse
    Stéphanie Goffin
    Monique Carnol
    Sandrine Malchair
    Alain Debacq
    Bernard Longdoz
    Marc Aubinet
    Biogeochemistry, 2013, 112 : 441 - 455
  • [4] Short-term temperature impact on soil heterotrophic respiration in limed agricultural soil samples
    Buysse, Pauline
    Goffin, Stephanie
    Carnol, Monique
    Malchair, Sandrine
    Debacq, Alain
    Longdoz, Bernard
    Aubinet, Marc
    BIOGEOCHEMISTRY, 2013, 112 (1-3) : 441 - 455
  • [5] Responses of Soil, Heterotrophic, and Autotrophic Respiration to Experimental Open-Field Soil Warming in a Cool-Temperate Deciduous Forest
    Nam-Jin Noh
    Masatoshi Kuribayashi
    Taku M. Saitoh
    Tatsuro Nakaji
    Masahiro Nakamura
    Tsutom Hiura
    Hiroyuki Muraoka
    Ecosystems, 2016, 19 : 504 - 520
  • [6] Responses of Soil, Heterotrophic, and Autotrophic Respiration to Experimental Open-Field Soil Warming in a Cool-Temperate Deciduous Forest
    Noh, Nam-Jin
    Kuribayashi, Masatoshi
    Saitoh, Taku M.
    Nakaji, Tatsuro
    Nakamura, Masahiro
    Hiura, Tsutom
    Muraoka, Hiroyuki
    ECOSYSTEMS, 2016, 19 (03) : 504 - 520
  • [7] Soil temperature and fungal diversity jointly modulate soil heterotrophic respiration under short-term warming in the Zoige alpine peatland
    Wang, Xiaodong
    Li, Yong
    Hao, Yanbin
    Kang, Enze
    Han, Jinfeng
    Zhang, Xiaodong
    Li, Meng
    Zhang, Kerou
    Yan, Liang
    Yang, Ao
    Niu, Yuechuan
    Kang, Xiaoming
    Yan, Zhongqing
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 370
  • [8] Will heterotrophic soil respiration be more sensitive to warming than autotrophic respiration in subtropical forests?
    Liu, Xiaofei
    Chen, Shidong
    Yang, Zhijie
    Lin, Chengfang
    Xiong, Decheng
    Lin, Weisheng
    Xu, Chao
    Chen, Guangshui
    Xie, Jinsheng
    Li, Yiqing
    Yang, Yusheng
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2019, 70 (03) : 655 - 663
  • [9] Carbon losses due to soil warming: Do autotrophic and heterotrophic soil respiration respond equally?
    Schindlbacher, Andreas
    Zechmeister-Boltenstern, Sophie
    Jandl, Robert
    GLOBAL CHANGE BIOLOGY, 2009, 15 (04) : 901 - 913
  • [10] Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration
    Olsson, P
    Linder, S
    Giesler, R
    Högberg, P
    GLOBAL CHANGE BIOLOGY, 2005, 11 (10) : 1745 - 1753