Experimental Investigation of Adiabatic Gas-Liquid Flow Regimes and Pressure Drop in Slit Microchannel

被引:0
|
作者
F. V. Ronshin
Yu. A. Dementyev
E. A. Chinnov
V. V. Cheverda
O. A. Kabov
机构
[1] Russian Academy of Sciences,Kutateladze Institute of Thermophysics, Siberian Branch
[2] Novosibirsk State University,undefined
来源
关键词
Microchannel; Two-phase flow; Regimes; Pressure drop;
D O I
暂无
中图分类号
学科分类号
摘要
The flow regimes and pressure drop in a slit microchannel with a height of 164 μm and width of 10 mm are studied experimentally. The boundaries between the regimes are precisely determined using the developed procedure. The homogeneous flow model and the separated flow model are considered for determining the frictional pressure drop. Experimental data are compared with theoretical models. For the homogeneous flow model, the Dukler correlation gives good agreement with experimental data with a mean absolute error of 12%. A new correlation, which describes the experimental data with a mean absolute error of 8.1%, is proposed for the homogeneous flow model. For the separated flow model, the Hwang and Kim correlation gives the best agreement with a mean absolute error of 12.8%. The dependence of the pressure drop in the film flows (annular and stratified regimes) on the mass gas quality has been investigated. It is shown that the minimal pressure drop for the film flows is achieved in the stratified regime; thus, it is the most promising for the use in technical applications.
引用
收藏
页码:693 / 707
页数:14
相关论文
共 50 条
  • [31] PRESSURE-DROP AND HOLDUP IN STRATIFIED GAS-LIQUID FLOW
    RUSSELL, TWF
    ETCHELLS, AW
    JENSEN, RH
    ARRUDA, PJ
    AICHE JOURNAL, 1974, 20 (04) : 664 - 669
  • [32] Pressure drop of gas-liquid Taylor flow in square microchannels
    Kurimoto, Ryo
    Tsubouchi, Hiroki
    Minagawa, Hisato
    Yasuda, Takahiro
    MICROFLUIDICS AND NANOFLUIDICS, 2020, 24 (01)
  • [33] HOLDUP AND PRESSURE DROP WITH GAS-LIQUID FLOW IN A VERTICAL PIPE
    HUGHMARK, GA
    PRESSBURG, BS
    AICHE JOURNAL, 1961, 7 (04) : 677 - 682
  • [34] PRESSURE-DROP IN GAS-LIQUID FLOW AT MICROGRAVITY CONDITIONS
    ZHAO, L
    REZKALLAH, KS
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1995, 21 (05) : 837 - 849
  • [35] PRESSURE DROP IN HORIZONTAL AND VERTICAL COCURRENT GAS-LIQUID FLOW
    HUGHMARK, GA
    INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1963, 2 (04): : 315 - &
  • [36] Effect of Liquid Properties on Frictional Pressure Drop in a Gas-Liquid Two-Phase Microchannel
    Zhang, Ruijie
    Tao, Fangfang
    Jin, Haibo
    Guo, Xiaoyan
    He, Guangxiang
    Ma, Lei
    Zhang, Rongyue
    Gu, Qingyang
    Yang, Suohe
    PROCESSES, 2022, 10 (05)
  • [37] Effect of inlet geometry on adiabatic gas-liquid two-phase flow in a microchannel
    Ide, Hideo
    Kimura, Ryuji
    Kawaji, Masahiro
    HEAT TRANSFER ENGINEERING, 2009, 30 (1-2) : 37 - 42
  • [38] Effect of inlet geometry on adiabatic gas-liquid two-phase flow in a microchannel
    Ide, Hideo
    Kimura, Ryuji
    Kawaji, Masahiro
    ICNMM2007: PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS, AND MINICHANNELS, 2007, : 933 - 938
  • [39] Gas-liquid two-phase flow in microchannel at elevated pressure
    Zhao, Yuchao
    Chen, Guangwen
    Ye, Chunbo
    Yuan, Quan
    CHEMICAL ENGINEERING SCIENCE, 2013, 87 : 122 - 132
  • [40] Experimental study on flow patterns and pressure drop of decaying swirling gas-liquid flow in a vertical pipe
    Zhang, Jiarong
    Liu, Li
    Liu, Shuai
    Gu, Hanyang
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING (ICONE2020), VOL 1, 2020,