EmNet: a deep integrated convolutional neural network for facial emotion recognition in the wild

被引:0
|
作者
Sumeet Saurav
Ravi Saini
Sanjay Singh
机构
[1] Academy of Scientific and Innovative Research,
[2] CSIR-Central Electronics Engineering Research Institute,undefined
来源
Applied Intelligence | 2021年 / 51卷
关键词
Deep convolutional neural network; Embedded implementation; CNN optimization; Facial emotion recognition;
D O I
暂无
中图分类号
学科分类号
摘要
In the past decade, facial emotion recognition (FER) research saw tremendous progress, which led to the development of novel convolutional neural network (CNN) architectures for automatic recognition of facial emotions in static images. These networks, though, have achieved good recognition accuracy, they incur high computational costs and memory utilization. These issues restrict their deployment in real-world applications, which demands the FER systems to run on resource-constrained embedded devices in real-time. Thus, to alleviate these issues and to develop a robust and efficient method for automatic recognition of facial emotions in the wild with real-time performance, this paper presents a novel deep integrated CNN model, named EmNet (Emotion Network). The EmNet model consists of two structurally similar DCNN models and their integrated variant, jointly-optimized using a joint-optimization technique. For a given facial image, the EmNet gives three predictions, which are fused using two fusion schemes, namely average fusion and weighted maximum fusion, to obtain the final decision. To test the efficiency of the proposed FER pipeline on a resource-constrained embedded platform, we optimized the EmNet model and the face detector using TensorRT SDK and deploy the complete FER pipeline on the Nvidia Xavier device. Our proposed EmNet model with 4.80M parameters and 19.3MB model size attains notable improvement over the current state-of-the-art in terms of accuracy with multi-fold improvement in computational efficiency.
引用
收藏
页码:5543 / 5570
页数:27
相关论文
共 50 条
  • [1] EmNet: a deep integrated convolutional neural network for facial emotion recognition in the wild
    Saurav, Sumeet
    Saini, Ravi
    Singh, Sanjay
    APPLIED INTELLIGENCE, 2021, 51 (08) : 5543 - 5570
  • [2] Deep convolutional neural network architecture for facial emotion recognition
    Pruthviraja, Dayananda
    Kumar, Ujjwal Mohan
    Parameswaran, Sunil
    Chowdary, Vemulapalli Guna
    Bharadwaj, Varun
    PEERJ COMPUTER SCIENCE, 2024, 10 : 1 - 20
  • [3] Facial Emotion Recognition Using Deep Convolutional Neural Network
    Pranav, E.
    Kamal, Suraj
    Chandran, Satheesh C.
    Supriya, M. H.
    2020 6TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND COMMUNICATION SYSTEMS (ICACCS), 2020, : 317 - 320
  • [4] Evaluation of Deep Convolutional Neural Network architectures for Emotion Recognition in the Wild
    Talipu, A.
    Generosi, A.
    Mengoni, M.
    Giraldi, L.
    2019 IEEE 23RD INTERNATIONAL SYMPOSIUM ON CONSUMER TECHNOLOGIES (ISCT), 2019, : 25 - 27
  • [5] Multichannel convolutional neural network for human emotion recognition from in-the-wild facial expressions
    Hadjer Boughanem
    Haythem Ghazouani
    Walid Barhoumi
    The Visual Computer, 2023, 39 : 5693 - 5718
  • [6] Multichannel convolutional neural network for human emotion recognition from in-the-wild facial expressions
    Boughanem, Hadjer
    Ghazouani, Haythem
    Barhoumi, Walid
    VISUAL COMPUTER, 2023, 39 (11): : 5693 - 5718
  • [7] Facial Emotion Recognition of Students using Convolutional Neural Network
    Lasri, Imane
    Solh, Anouar Riad
    El Belkacemi, Mourad
    2019 THIRD INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING IN DATA SCIENCES (ICDS 2019), 2019,
  • [8] Facial Emotion Recognition on a Dataset Using Convolutional Neural Network
    Tumen, Vedat
    Soylemez, Omer Faruk
    Ergen, Burhan
    2017 INTERNATIONAL ARTIFICIAL INTELLIGENCE AND DATA PROCESSING SYMPOSIUM (IDAP), 2017,
  • [9] Emotion Recognition of Facial Expression Using Convolutional Neural Network
    Kumar, Pradip
    Kishore, Ankit
    Pandey, Raksha
    INNOVATIVE DATA COMMUNICATION TECHNOLOGIES AND APPLICATION, 2020, 46 : 362 - 369
  • [10] On the Use of Convolutional Neural Network Architectures for Facial Emotion Recognition
    Espinel, Andres
    Perez, Noel
    Riofrio, Daniel
    Benitez, Diego S.
    Flores Moyano, Ricardo
    APPLICATIONS OF COMPUTATIONAL INTELLIGENCE, COLCACI 2021, 2022, 1471 : 18 - 30