A cascadic multigrid method for a kind of semilinear elliptic problem

被引:0
|
作者
Haixiong Yu
Jinping Zeng
机构
[1] Hunan University,College of Mathematics and Econometrics
[2] Dongguan University of Technology,College of Computer
来源
Numerical Algorithms | 2011年 / 58卷
关键词
Semilinear elliptic problem; Hölder continuous; Cascadic multigrid method; 65N12; 65N30; 65N55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we analyze a cascadic multigrid method for semilinear elliptic problems in which the derivative of the semilinear term is Hölder continuous. We first investigate the standard finite element error estimates of this kind of problem. We then solve the corresponding discrete problems using the cascadic multigrid method. We prove that the algorithm has an optimal order of convergence in energy norm and quasi-optimal computational complexity. We also report some numerical results to support the theory.
引用
收藏
页码:143 / 162
页数:19
相关论文
共 50 条
  • [1] A cascadic multigrid method for a kind of semilinear elliptic problem
    Yu, Haixiong
    Zeng, Jinping
    NUMERICAL ALGORITHMS, 2011, 58 (02) : 143 - 162
  • [2] On the convergence of a cascadic multigrid method for semilinear elliptic problem
    Zhou, SZ
    Hu, HX
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 159 (02) : 407 - 417
  • [3] A type of cascadic multigrid method for coupled semilinear elliptic equations
    Fei Xu
    Qiumei Huang
    Numerical Algorithms, 2020, 83 : 485 - 510
  • [4] A type of cascadic multigrid method for coupled semilinear elliptic equations
    Xu, Fei
    Huang, Qiumei
    NUMERICAL ALGORITHMS, 2020, 83 (02) : 485 - 510
  • [5] A full multigrid method for semilinear elliptic equation
    Fei Xu
    Hehu Xie
    Applications of Mathematics, 2017, 62 : 225 - 241
  • [6] An Adaptive Multigrid Method for Semilinear Elliptic Equations
    Xu, Fei
    Huang, Qiumei
    Chen, Shuangshuang
    Bing, Tao
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2019, 9 (04) : 683 - 702
  • [7] A FULL MULTIGRID METHOD FOR SEMILINEAR ELLIPTIC EQUATION
    Xu, Fei
    Xie, Hehu
    APPLICATIONS OF MATHEMATICS, 2017, 62 (03) : 225 - 241
  • [8] A modulus-based cascadic multigrid method for elliptic variational inequality problems
    Wang, Yan
    Li, Chenliang
    NUMERICAL ALGORITHMS, 2022, 90 (04) : 1777 - 1791
  • [9] A modulus-based cascadic multigrid method for elliptic variational inequality problems
    Yan Wang
    Chenliang Li
    Numerical Algorithms, 2022, 90 : 1777 - 1791
  • [10] A new extrapolation cascadic multigrid method for three dimensional elliptic boundary value problems
    Pan, Kejia
    He, Dongdong
    Hu, Hongling
    Ren, Zhengyong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 344 : 499 - 515