We consider the energy-critical non-linear focusing Schrödinger equation in dimension N = 3, 4, 5. An explicit stationary solution, W, of this equation is known. In [KeM], the energy E(W) has been shown to be a threshold for the dynamical behavior of solutions of the equation. In the present article, we study the dynamics at the critical level E(u) = E(W) and classify the corresponding solutions. This gives in particular a dynamical characterization of W.