Dynamic of Threshold Solutions for Energy-Critical NlS

被引:0
作者
Thomas Duyckaerts
Frank Merle
机构
[1] Université de Cergy-Pontoise,Département de Mathématiques
来源
Geometric and Functional Analysis | 2009年 / 18卷
关键词
Nonlinear wave equation; energy-critical; asymptotic behavior; scattering; blow-up; 35L70; 35B30; 35B40; 35P25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the energy-critical non-linear focusing Schrödinger equation in dimension N = 3, 4, 5. An explicit stationary solution, W, of this equation is known. In [KeM], the energy E(W) has been shown to be a threshold for the dynamical behavior of solutions of the equation. In the present article, we study the dynamics at the critical level E(u) = E(W) and classify the corresponding solutions. This gives in particular a dynamical characterization of W.
引用
收藏
页码:1787 / 1840
页数:53
相关论文
empty
未找到相关数据