An exact approach to sparse principal component analysis

被引:0
|
作者
Alessio Farcomeni
机构
[1] Università di Roma “La Sapienza”,
来源
Computational Statistics | 2009年 / 24卷
关键词
Branch and bound; Dimension reduction; Feature selection; Feature extraction; Interleaving eigenvalues theorem; Sparse principal components;
D O I
暂无
中图分类号
学科分类号
摘要
We show a branch and bound approach to exactly find the best sparse dimension reduction of a matrix. We can choose between enforcing orthogonality of the coefficients and uncorrelation of the components, and can explicitly set the degree of sparsity. We suggest methods to choose the number of non-zero loadings for each component; illustrate and compare our approach with existing methods through a benchmark data set.
引用
收藏
页码:583 / 604
页数:21
相关论文
共 50 条
  • [1] An exact approach to sparse principal component analysis
    Farcomeni, Alessio
    COMPUTATIONAL STATISTICS, 2009, 24 (04) : 583 - 604
  • [2] Exact and Approximation Algorithms for Sparse Principal Component Analysis
    Li, Yongchun
    Xie, Weijun
    INFORMS JOURNAL ON COMPUTING, 2024,
  • [3] An augmented Lagrangian approach for sparse principal component analysis
    Lu, Zhaosong
    Zhang, Yong
    MATHEMATICAL PROGRAMMING, 2012, 135 (1-2) : 149 - 193
  • [4] An augmented Lagrangian approach for sparse principal component analysis
    Zhaosong Lu
    Yong Zhang
    Mathematical Programming, 2012, 135 : 149 - 193
  • [5] Sparse principal component analysis
    Zou, Hui
    Hastie, Trevor
    Tibshirani, Robert
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (02) : 265 - 286
  • [6] A block coordinate descent approach for sparse principal component analysis
    Zhao, Qian
    Meng, Deyu
    Xu, Zongben
    Gao, Chenqiang
    NEUROCOMPUTING, 2015, 153 : 180 - 190
  • [7] A plug-in approach to sparse and robust principal component analysis
    Luca Greco
    Alessio Farcomeni
    TEST, 2016, 25 : 449 - 481
  • [8] A plug-in approach to sparse and robust principal component analysis
    Greco, Luca
    Farcomeni, Alessio
    TEST, 2016, 25 (03) : 449 - 481
  • [9] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [10] Multilinear Sparse Principal Component Analysis
    Lai, Zhihui
    Xu, Yong
    Chen, Qingcai
    Yang, Jian
    Zhang, David
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (10) : 1942 - 1950