On the Fučik point spectrum for Schrödinger operators on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^{N}$$\end{document}

被引:1
|
作者
Thomas Bartsch
Zhi-Qiang Wang
Zhitao Zhang
机构
[1] Universität Giessen,Mathematisches Institut
[2] Utah State University,Department of Mathematics and Statistics
[3] Chinese Academy of Sciences,Academy of Mathematics & Systems Science
关键词
35J60; 35B33; Fučik spectrum; Schrödinger operator; nonlinear Schrödinger equations; jumping nonlinearity; critical point theory;
D O I
10.1007/s11784-009-0109-6
中图分类号
学科分类号
摘要
We investigate the Fučik point spectrum of the Schrödinger operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\lambda} = - \Delta + V_{\lambda}\, {\rm in}\, L^{2}({\mathbb{R}}^{N})$$\end{document} when the potential Vλ has a steep potential well for sufficiently large parameter λ > 0. It is allowed that Sλ has essential spectrum with finitely many eigenvalues below the infimum of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_{\rm ess}(S_\lambda)$$\end{document}. We construct the first nontrivial curve in the Fučik point spectrum by minimax methods and show some qualitative properties of the curve and the corresponding eigenfunctions. As applications we establish some results on existence of multiple solutions for nonlinear Schrödinger equations with jumping nonlinearity.
引用
收藏
页码:305 / 317
页数:12
相关论文
共 12 条