共 12 条
- [1] Multiple Solutions for a Perturbed Fourth-Order Problem on RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{N}$$\end{document} International Journal of Applied and Computational Mathematics, 2017, 3 (3) : 2719 - 2727
- [2] Existence of weak solutions for a fractional p-Laplacian equation in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^N$$\end{document} Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 (2): : 515 - 529
- [3] Five solutions for the fractional p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pmb {p}$$\end{document}-Laplacian with noncoercive energy Nonlinear Differential Equations and Applications NoDEA, 2022, 29 (4)
- [4] Existence and limit behavior of least energy solutions to constrained Schrödinger–Bopp–Podolsky systems in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document} Zeitschrift für angewandte Mathematik und Physik, 2023, 74 (2)
- [5] p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p}$$\end{document}-Laplacian problems involving critical Hardy–Sobolev exponents Nonlinear Differential Equations and Applications NoDEA, 2018, 25 (3)
- [6] Ground States of Time-Harmonic Semilinear Maxwell Equations in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^3}$$\end{document} with Vanishing Permittivity Archive for Rational Mechanics and Analysis, 2015, 218 (2) : 825 - 861
- [7] Existence of multiple positive solutions for a class of Quasilinear Schrödinger-Poisson systems with p-Laplacian and singular nonlinearity terms in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document} Ricerche di Matematica, 2025, 74 (2) : 933 - 947
- [8] Periodic solutions for a class of second order Hamiltonian systems with p(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p(t)$\end{document}-Laplacian Boundary Value Problems, 2016 (1)
- [9] Three positive solutions for a nonlinear partial discrete Dirichlet problem with (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}-Laplacian operator Boundary Value Problems, 2022 (1)
- [10] Multiple periodic solutions of high order differential delay equations with 2k−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2k-1$\end{document} lags Advances in Difference Equations, 2019 (1)