Random periodic solution for a stochastic SIS epidemic model with constant population size

被引:0
作者
Dianli Zhao
Sanling Yuan
Haidong Liu
机构
[1] University of Shanghai for Science and Technology,College of Science
[2] Qufu Normal University,School of Mathematical Sciences
来源
Advances in Difference Equations | / 2018卷
关键词
Stochastic SIS epidemic model; Random periodic solution; Constant population size; Persistence; Extinction; 47D07; 60J60; 60H10; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a stochastic susceptible-infected-susceptible (SIS) epidemic model with periodic coefficients is formulated. Under the assumption that the total population is fixed by N, an analogue of the threshold R0T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${R_{0}^{T}}$\end{document} is identified. If R0T>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${R_{0}^{T} > 1}$\end{document}, the model is proved to admit at least one random periodic solution which is nontrivial and located in (0,N)×(0,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(0,N)\times(0,N)$\end{document}. Further, the conditions for persistence and extinction of the disease are also established, where a threshold is given in the case that the noise is small. Comparing with the threshold of the autonomous SIS model, it is generalized to its averaged value in one period. The random periodic solution is illuminated by computer simulations.
引用
收藏
相关论文
共 55 条
[1]  
Imhof L.(2005)Exclusion and persistence in deterministic and stochastic chemostat models J. Differ. Equ. 217 26-53
[2]  
Walcher S.(2014)Long-time behavior of a stochastic SIR model Appl. Math. Comput. 236 1-9
[3]  
Lin Y.(2013)Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence Stat. Probab. Lett. 83 960-968
[4]  
Jiang D.(2016)Study on the threshold of a stochastic SIR epidemic model and its extensions Commun. Nonlinear Sci. Numer. Simul. 38 172-177
[5]  
Xia P.(2016)Nontrivial periodic solution of a stochastic non-autonomous SISV epidemic model Physica A 462 837-845
[6]  
Lahrouz A.(2015)A stochastic SIRS epidemic model with infectious force under intervention strategies J. Differ. Equ. 259 7463-7502
[7]  
Omari L.(2017)Dynamics for a class of stochastic SIS epidemic models with nonlinear incidence and periodic coefficients Physica A 481 176-190
[8]  
Zhao D.(2005)Stability of a stochastic SIR system Physica A 354 111-126
[9]  
Liu Q.(2012)The behavior of an SIR epidemic model with stochastic perturbation Stoch. Anal. Appl. 30 755-773
[10]  
Jiang D.(2014)Threshold behaviour of a stochastic SIR model Appl. Math. Model. 38 5067-5079