Piezoelectric control of the mobility of a domain wall driven by adiabatic and non-adiabatic torques

被引:0
作者
De Ranieri E. [1 ]
Roy P.E. [1 ]
Fang D. [1 ,2 ]
Vehsthedt E.K. [3 ,4 ]
Irvine A.C. [2 ]
Heiss D. [2 ]
Casiraghi A. [5 ]
Campion R.P. [5 ]
Gallagher B.L. [5 ]
Jungwirth T. [3 ,5 ]
Wunderlich J. [1 ,3 ]
机构
[1] Hitachi Cambridge Laboratory, Cambridge CB3 0HE, JJ Thomson Avenue
[2] Microelectronics Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, JJ Thomson Avenue
[3] Institute of Physics ASCR, V.v.i., 162 53 Praha 6
[4] Department of Physics, Texas A and M University, College Station
[5] School of Physics and Astronomy, University of Nottingham
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
D O I
10.1038/nmat3657
中图分类号
学科分类号
摘要
The rich internal degrees of freedom of magnetic domain walls make them an attractive complement to electron charge for exploring new concepts of storage, transport and processing of information. Here we use the tunable internal structure of a domain wall in a perpendicularly magnetized GaMnAsP/GaAs ferromagnetic semiconductor and demonstrate devices in which piezoelectrically controlled magnetic anisotropy yields up to 500% mobility variations for an electrical-current-driven domain wall. We observe current-induced domain wall motion over a wide range of current-pulse amplitudes and report a direct observation and the piezoelectric control of the Walker breakdown separating two regimes with different mobilities. Our work demonstrates that in spin-orbit-coupled ferromagnets with weak extrinsic domain wall pinning, the piezoelectric control allows one to experimentally assess the upper and lower boundaries of the characteristic ratio of adiabatic and non-adiabatic spin-transfer torques in the current-driven domain wall motion. © 2013 Macmillan Publishers Limited. All rights reserved.
引用
收藏
页码:808 / 814
页数:6
相关论文
共 38 条
  • [1] Chappert C., Fert A., Dau F.N.V., The emergence of spin electronics in data storage, Nature Mater, 6, pp. 813-823, (2007)
  • [2] Parkin S.S.P., Hayshi M., Thomas L., Magnetic domain-wall racetrack memory, Science, 320, pp. 190-194, (2008)
  • [3] Allwood D.A., Et al., Magnetic domain-wall logic, Science, 309, pp. 1688-1692, (2005)
  • [4] Berger L., Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films, J. Appl. Phys, 55, pp. 1954-1956, (1984)
  • [5] Freitas P.P., Berger L., Observation of s-d exchange force between domain walls and electric current in very thin permalloy films, J. Appl. Phys, 57, pp. 1266-1269, (1985)
  • [6] Yamaguchi A., Et al., Real-space observation of current-driven domain wall motion in submicron magnetic wires, Phys. Rev. Lett, 92, (2004)
  • [7] Mougin A., Cormier M., Adam J.P., Metaxas P.J., Ferre J., Domain wall mobility, stability and walker breakdown in magnetic nanowires, Europhys. Lett, 78, (2007)
  • [8] Ralph D.C., Stiles M.D., Bader S., Current perspectives: Spin transfer torques, J. Magn. Magn. Mater, 320, pp. 1190-1216, (2008)
  • [9] Vanhaverbeke A., Viret M., Simple model of current-induced spin torque in domain walls, Phys. Rev B, 75, (2007)
  • [10] Fernandez-Rossier J., Nunez A.S., Abolfath M., MacDonald A.H., Optical spin transfer in ferromagnetic semiconductors, Preprint, (2003)