Bifurcation analysis of reaction–diffusion Schnakenberg model

被引:3
作者
Ping Liu
Junping Shi
Yuwen Wang
Xiuhong Feng
机构
[1] Harbin Normal University,Y.Y. Tseng Functional Analysis Research Center and School of Mathematical Sciences
[2] College of William and Mary,Department of Mathematics
来源
Journal of Mathematical Chemistry | 2013年 / 51卷
关键词
Schnakenberg model; Steady state solution; Hopf bifurcation; Steady state bifurcation; Pattern formation; 58F07; 58C28; 58C15; 34C23; 35B20; 35B32;
D O I
暂无
中图分类号
学科分类号
摘要
Bifurcations of spatially nonhomogeneous periodic orbits and steady state solutions are rigorously proved for a reaction–diffusion system modeling Schnakenberg chemical reaction. The existence of these patterned solutions shows the richness of the spatiotemporal dynamics such as oscillatory behavior and spatial patterns.
引用
收藏
页码:2001 / 2019
页数:18
相关论文
共 47 条
  • [1] De Wit A(1993)Chaotic Turing–Hopf mixed mode Phys. Rev. E. 48 R4191-R4194
  • [2] Dewel G(2009)Hopf bifurcation analysis of a reaction–diffusion Sel’kov system J. Math. Anal. Appl. 356 633-641
  • [3] Borckmans P(2005)Uniqueness of limit cycles in theoretical models of certain oscillating chemical reactions J. Phys. A 38 8211-8223
  • [4] Han W(2004)Stability analysis of Turing patterns generated by the Schnakenberg model J. Math. Biol. 49 358-390
  • [5] Bao Z(2001)Spatiotemporal dynamics near a supercritical Turing–Hopf bifurcation in a two-dimensional reaction-diffusion system Phys. Rev. E. 64 026219-1990
  • [6] Hwang T-W(2011)Steady-state solution for a general Schnakenberg model Nonlinear Anal. Real World Appl. 12 1985-1025
  • [7] Tsai H-J(2010)Multiple bifurcation analysis and spatiotemporal patterns in a 1-D Gierer-Meinhardt model of morphogenesis J. Bifur. Chaos Appl. Sci. Eng. 20 1007-6697
  • [8] Iron D(1997)Generic spatiotemporal dynamics near codimension-two Turing–Hopf bifurcations Phys. Rev. E. 55 6690-496
  • [9] Wei J(2009)Turing instabilities at Hopf bifurcation J. Nonlinear Sci. 19 467-400
  • [10] Winter M(1979)Simple chemical reaction systems with limit cycle behaviour J. Theor. Biol. 81 389-2812